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The work is devoted to the development of the boundary state 
method for the class of problems of torsion of cylindrical bodies with a 
nontrivial cross-sectional shape made from anisotropic materials.  At the 
ends of the final cylinder, the forces are specified, resulting in torsion 
moments.  The concepts of the spaces of internal and boundary states for 
an anisotropic medium are formulated. The theory of constructing bases 
of these spaces was developed using the general solution of Lekhnitsky.  
The basis of internal states includes the components of the displacement 
vector, the strain tensor, and the stress tensor. The basis of the boundary 
states includes the forces at the boundary of the cylinder, and the 
displacement of the boundary points. Scalar products are introduced in 
each of the spaces. In the basis of internal states, the scalar product 
expresses the internal energy of elastic deformation. In the basis of 
boundary states, it expresses the work of external forces. An 
isomorphism of the state space is established, which establishes a one-to-
one correspondence between their elements. Isomorphism allows the 
search for the internal state to be reduced to the study of the boundary 
state that is isomorphic to it.  The state spaces are orthogonalized and 
the desired state is decomposed into a Fourier series in terms of the 
orthonormal basis elements, where the given surface forces act as 
coefficients. The problem is solved for a cylinder whose cross section is 
in the shape of an I-beam made of anisotropic material.  Signs of 
convergence of the solution are given.  The main features of the problem 
solution are formulated.  The results are presented in graphical form. 
© 2019 INT TRANS J ENG MANAG SCI TECH. 

1. INTRODUCTION 
In solid mechanics, the determination of the characteristics of the stress-strain state of a rod 

during its torsion is a difficult task even for an isotropic body, since there is a non-symmetric 
distribution of stresses, failure of cross-sections, etc.  To solve the problems of torsion of rods from 
a material having an anisotropy of a common type; these include polymers, reinforced fiberglass, 
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glass reinforcement, etc., applied the method of boundary states. 

The problems of torsion of rods were considered in works of various directions in mechanics. 
For example, in [1] the particle method was applied to the problems of torsion of a rod to the stage of 
destruction. An experimental diagram of the torsion of a fluoroplastic sample was constructed, and 
microscopy of the rupture section was performed.  In [2], the torsion of an ideal-plastic rectangular 
prismatic rod with inclusion was considered. The stress state of the rod was determined, the lines of 
breaking of stresses were found, the field of characteristics was constructed. In [3], the problems of 
free and constrained torsion of an isotropic rod of a continuous circular cross section were solved 
numerically on the basis of the tensor-linear defining relation written through energetically consistent 
Cauchy stress tensors and Henki logarithmic deformations. In [4], the problems of torsion of a rod in 
an elastoplastic formulation by the method of boundary elements were solved. A study of the 
convergence of the solution depending on the parameters of the problem. In [5], a variant of flow 
theory was developed for the case of materials with large anisotropic elastoplastic deformations. The 
corresponding dynamic problem was formulated and a numerical method for solving two-
dimensional axisymmetric problems was developed. 

A number of papers are devoted to the torsion of bodies from anisotropic materials, for example, 
in [6], the stress-strain state of anisotropic cylindrical and prismatic rods was investigated under an 
arbitrary plasticity condition. In [7], a study was made of the peculiarities of the distribution of 
stresses and displacements in individual layers of a multilayer anisotropic rod. In [8], a method is 
proposed for solving the problem of torsion of layered anisotropic rods by the finite element method. 
The problem of torsion of rods of rhomboid section and section of compressor is considered.  In [9], 
an analysis of solutions of problems of torsion and stretching of nanotubes with two types of 
cylindrical anisotropy is given, the theory of which was constructed by S.G. Lehnitsky in the 
framework of the classical theory of elasticity. 

The boundary state method [10] is a new method of mechanics of a deformable solid. To date, 
its application in mechanics concerned a narrow range of tasks: torsion of prismatic rods, 
hydrodynamics of ideal liquids, static problems of the theory of elasticity of isotropic bodies, as in 
the absence of mass -output, and if there are any, problems of the linear theory of elasticity for 
inhomogeneous bodies, flat and spatial problems of the theory of elasticity for anisotropic bodies, 
dynamic problems: the study of forced oscillations of elastic bodies solution-set boundary value 
problems with singularities geometric and physical nature. 

2. FORMULATION OF THE PROBLEM 

We consider the equilibrium of an elastic homogeneous body (figure 1), bounded by a cylindrical 

surface, in the general case not circular, with general anisotropy. The domain of the cross section is 

finite and simply connected; body length is finite. 
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Figure1: Anisotropic cylinder 

 

At the ends of the cylinder, there are forces ),( yxpx  and ),( yxp y , leading to torsion moments 

M relative to the z-axis. No initial stresses and bulk forces. 

3. SOLUTION METHOD 

To solve this problem, we use the boundary state method (MHS) [10].  MHS is a new energy 
method for solving problems of equations of mathematical physics. He showed his efficiency in 
solving boundary problems of the theory of elasticity, both for isotropic and anisotropic media, in 
solving problems of thermoelasticity, hydrodynamics of an ideal fluid, dynamics (oscillations) of 
isotropic bodies. 

The foundation of the method is the space of internal   and boundary Ã  states: 

 ...,...,,,, 321 k ;  ...,...,,,, 321 kÃ  . 

The internal state is determined by the sets of components of the vector of displacements, tensors 

of deformations and stresses: 

  },,{ k
ij

k
ij

k
ik u   .            (1) 

The main difficulty of forming a solution in the MHS is the design of the basis of internal states, 
which relies on a common or fundamental solution for the environment; It is also possible to use any 
private or special solutions. The method of constructing the basis of internal states will be described 
below. 

Scalar product in the space of internal states   is expressed through the internal energy of elastic 
deformation (hence the membership of the method in the energy class). For example, for the first and 
second internal state of the body occupying the V region: 

dV
V

ijij
21

21 ),(  . 

Moreover, due to the commutatively of the states of the medium: 

dVdV
V

ijij

V

ijij   1221
1221 ),(),(  . 

The boundary state is determined by the components of the vector of displacement of the points 
of the boundary and surface forces: 
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where jn  is a component of the normal to the boundary. 

In the space of boundary states Г, the scalar product expresses the work of external forces on the 
surface of the body S, for example, for the first and second states: 

dSup
S

ii
21

21 ),(  . 

Moreover, by virtue of the principle of possible movements: 

dSupdSup
S

ii

S

ii   1221
1221 ),(),(  . 

It is proved that in the case of a smooth boundary both state spaces are Hilbert and are conjugated 
by an isomorphism [10]. By definition, each element of k  corresponds to a single element of 

Ãk  , and this correspondence is one-to-one: kk   . This allows the search for the internal state 
to be reduced to the construction of a boundary state that is isomorphic to it. The latter essentially 
depends on the boundary conditions. In the case of the first and second main problems of mechanics, 
the problem reduces to a resolving system of equations for the Fourier coefficients, decomposition of 
the desired inner   and boundary   states in a series in terms of the orthonormal basis elements: 


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or explicitly: 
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The Fourier coefficients in the case of the first primary problem with the forces given by the ends 
of the cylinder },{ 00 yx ppp  are: 

dSvpupc k
y

S

k
x

k
k )(),( 00  up , 

where 0xp  , and 0yp  are set at the end of the effort, and },,{ kkkk wvuu  indicating displacement 

vector in the basic element },{ k
i

k
ik pu . 

4. CONSTRUCTION OF THE BASIS OF INTERNAL STATES 

Lekhnitsky [11] received a general solution of the generalized Saint-Venant problem in the 
absence of mass forces: 
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Constants ,,, CBA  are determined from the equilibrium conditions at the ends: 
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here 21, II  are the main moments of inertia of the cross section (relative to the x and y-axes); tM  – 

torsion moment, to which the forces on the ends lead (Figure 1), where 321 ,, zzz  are the generalized 

complex variables with yxz 11  , yxz 22  , yxz 33  , 321 ,,   – various complex roots of the 

characteristic equation [2]. 
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where F  and   are stress functions. 

Base sets of internal states can be constructed by generating all sorts of options for the three 

analytical functions. For a simply connected domain, it has the form [13]: 
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By giving the analytical functions (3) successively the values (4), all components of the elastic 

state (2) are determined, thereby determining the basis of the internal states (1). 

Next comes the orthogonalization of the bases of the state spaces. 

5. THE SOLUTION OF THE PROBLEM 

As mentioned in section 3, MHS approach utilized for solving the problem.  For instance, we 

considered the torsion problem of an anisotropic rod, the cross section of which is in the shape of an 

I-beam (Figure 2).  The most general case of anisotropy is assumed, when the number of strain 

coefficients is 21. At the ends were set efforts [14]: 
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There are no forces on the side surface. 

 
Figure 2: Boundary conditions 

The problem is solved approximately; 240 elements of an orthonormal basis were used. The 

difficulty lies in the time spent on the process of orthonormalization of the basis of internal states and 

on the calculation of the Fourier coefficients, the headings of which are shown in Figure 3. 
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Figure 3: The values of the Fourier coefficients. 

In Figure 4 shows the graph of saturation of the Bessel sum 




240

1

2

n
jcb  (left side of the Parseval 

inequality). 

 
Figure 4: Bessel sum 

In Figure 5 shows the contour of the deformed cylinder (due to small deformations, the contour 

is presented in a hypertrophied form). 

 
Figure 5: Contour of the deformed body 
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The integral value of the specified torque is 74.667, while the resulting solution is 74.693. 

6. CONCLUSION 

It should be noted that the singularity of the body geometry does not affect the convergence of 
the solution of the problems of torsion, bending and stretching of the rods. However, the picture 
changes dramatically for the worse if efforts are made on the side surface. To examine the boundary 
states, we consider torsion of circular bars with one end fixed and the other end free on which tractions 
that results in a pure torque are prescribed arbitrarily over the free end surface. Exact solutions that 
satisfy the prescribed boundary conditions point by point over the entire boundary surfaces are 
derived in a unified manner for problems of torsion of anisotropic cylinders with or without radial 
inhomogeneity. The following conclusions can be drawn from the analysis. (1) The classical solution 
based on the boundary states is useful for torsion of isotropic circular bars with or without radial 
inhomogeneity. The stress disturbance is confined to the local region near the end where the torsion 
load is applied. (2) The stresses at the fixed end of circular bars under torsion can be evaluated using 
the solution based on MHS except in the case of strong anisotropy 

Results showed that by the MHS, the Fourier coefficients for calculating the boundary beam 
problem efficiently applied. The boundary state method was successfully implemented in terms of 
solving the torsion problem of anisotropic cylindrical bodies; the solution is reduced to the routine 
calculation of certain integrals. A specific solution for the problem of torsion for a complex contour 
body is constructed. When solving these problems, a rather “long” basis is required. 
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