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The present article is devoted to the development of a mathematical 
model of oscillations of cylindrical helical springs under the action of 
external mechanical forces.  The article is devoted to the equations of 
oscillations of spatial rods. The necessary assumptions to consider are 
the oscillations, Kirchhoff equilibrium equations, and the additional 
Clebsch equations that allow one to solve them.  The system of linear 
differential equations and conditions allow calculating the values of 
linear and angular displacements of the spring, by calculating the 
corresponding values for individual sections. The equations model make 
it possible to determine the arising internal forces and moments of forces 
during oscillations. 
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1. INTRODUCTION 
A theoretical study of mechanical vibrations of the screw springs is considered in [1-5]. 

The oscillation simulation of a helical spring with a distributed mass, stiffness and an infinite 

number of degrees of freedom is carried out without using approximate mathematical 

models in which it is replaced by an equivalent bar.  Calculation of the model, in this case, 

is associated with computational difficulties since it is associated with solving a system of 

partial differential equations that describe the dynamics of a thin spatial curvilinear rod. 

However, numerical methods for solving equations allow us to solve the posed problem. 

In the study of spatial mechanical vibrations, the following assumptions are made: 

-  During oscillations, the elastic moduli of the first and second kind of material for 

manufacturing the spring do not change; 

-  The force of internal friction of the spring material is not taken into account. 

Assumptions are valid for fluctuations around the position of static equilibrium with 
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amplitude, the parameters of which do not violate Hooke's law [6, 7]: 

  Q = EFε             (1) 

Where Q is the amount of internal force during vibrations; F is the cross-sectional area of 
the spring wire; ε - relative elongation of the wire. 

The increasing influence of internal friction forces in the spring material during 
oscillations is not taken into account. The magnitude of these forces is much less than those 
of the magnitude of the internal forces increasing. 

2. METHODOLOGY 
To analyze oscillations, it is proposed to use the Kirchhoff equations, describing the 

vibrations of a thin spatial rod 1 [1]. The equations determine the linear and angular 
displacements of the rod, under the action of an external load in a moving (rotating) 
coordinate system. The origin of this coordinate system coincides with the center of gravity 
of cross-section of the rod, and the axes OX, OU, OZ, respectively, coincide in direction 
with the normal, binormal, and tangent to the axial line. Moving the coordinate system along 
the axis of the rod by an elementary distance ds, causes its rotation relative to OX, OU, OZ. 

The Kirchhoff system of equations is written: 

  𝜕𝜕𝑄𝑄𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑄𝑄𝑧𝑧𝑞𝑞 − 𝑄𝑄у𝑟𝑟 − 𝑞𝑞𝑥𝑥 = 0, 

  𝜕𝜕𝑄𝑄у
𝜕𝜕𝜕𝜕

+ 𝑄𝑄𝑥𝑥𝑟𝑟 − 𝑄𝑄𝑧𝑧𝑝𝑝 − 𝑞𝑞у = 0, 

  𝜕𝜕𝑄𝑄𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑄𝑄у𝑝𝑝 − 𝑄𝑄𝑥𝑥𝑞𝑞 − 𝑞𝑞𝑧𝑧 = 0, 

  𝜕𝜕𝑀𝑀𝑥𝑥
𝜕𝜕𝜕𝜕

+𝑀𝑀𝑧𝑧𝑞𝑞 −𝑀𝑀у𝑟𝑟 − 𝑄𝑄у −𝑚𝑚𝑥𝑥 = 0, 

  𝜕𝜕𝑀𝑀у
𝜕𝜕𝜕𝜕

+𝑀𝑀𝑥𝑥𝑟𝑟 −𝑀𝑀𝑧𝑧𝑝𝑝 + 𝑄𝑄𝑥𝑥 −𝑚𝑚у = 0, 

  𝜕𝜕𝑀𝑀𝑧𝑧
𝜕𝜕𝜕𝜕

+𝑀𝑀у𝑝𝑝 −𝑀𝑀𝑥𝑥𝑞𝑞 −𝑚𝑚𝑧𝑧 = 0,          (2), 

where Qx, Qy, Qz  are the internal forces in the rod along the axes ОХ, ОУ, ОZ; Мx, Мy, Mz 
are the moments of forces in the rod along the axes ОХ, ОУ, ОZ; p, q, r - the projection of 
the curvature of the curve of the rod axis on the OX, OU, OZ; s is the length coordinate; 𝑞𝑞𝑥𝑥, 
𝑞𝑞𝑦𝑦, 𝑞𝑞𝑥𝑥 are the projected vector of the distributed load on the axis ОХ, ОУ, ОZ; mx, my, mz  
are the  projected vector of the distributed moment on the  axes ОХ, ОУ, ОZ. 

The differential Equations (2) are the equilibrium equations for the internal forces for 
the spring element, the scheme of which is shown in Figure 1. 

Since the mathematical analysis of the spatial rod's vibrations is a statically indefinite 
problem, in addition to the equilibrium Equations (2), the Clebsch equations are used, which 
determine the relationship between linear, angular displacements, and linear deformation. 
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Figure 1: Diagram of a loaded element. 

 

3. ANALYSIS 
In the study of oscillations, an element is considered that changes its initial length from 

ds0 to ds, and occupies a new position in the space under the action of an applied external 

load (Figure 2). 

 
Figure 2: The deformation pattern. 

 
Clebsch equations are written as follows: 

  𝜓𝜓у = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑣𝑣𝑟𝑟𝑜𝑜 +𝑤𝑤𝑞𝑞𝑜𝑜, 

  −𝜙𝜙х = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕
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  𝑟𝑟∗ = 𝜕𝜕𝛩𝛩𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑝𝑝о𝜓𝜓у − 𝑞𝑞о𝜙𝜙𝑥𝑥, 

  𝜓𝜓у = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑣𝑣𝑟𝑟𝑜𝑜 +𝑤𝑤𝑞𝑞𝑜𝑜, 
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  −𝜙𝜙х = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑤𝑤𝑝𝑝𝑜𝑜 + 𝑢𝑢𝑟𝑟𝑜𝑜, 

  𝜀𝜀 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑢𝑢𝑞𝑞𝑜𝑜 + 𝑣𝑣𝑝𝑝𝑜𝑜, 

  𝑝𝑝∗ = 𝜕𝜕𝜙𝜙𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑞𝑞о𝛩𝛩𝑧𝑧 − 𝑟𝑟о𝜓𝜓у, 

  𝑞𝑞∗ = 𝜕𝜕𝜓𝜓у
𝜕𝜕𝜕𝜕

+ 𝑟𝑟о𝜙𝜙𝑥𝑥 − 𝑝𝑝о𝛩𝛩𝑧𝑧, 

  𝑟𝑟∗ = 𝜕𝜕𝛩𝛩𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑝𝑝о𝜓𝜓у − 𝑞𝑞о𝜙𝜙𝑥𝑥           (3), 

where u, v, w are the linear displacement point Оо in the direction of the axes ОоХо, ОоУо, 
ОоZо; ϕх, ψу,Θz   are the angles of rotation of the coordinate system ОХУZ relative to the 
coordinate system Оо ХоУо Zо; po, qo, ro is the projections of the curvature of the un-deformed 
element on the axis ОоХо, ОоУо, ОоZо; p*, q*, r* are the increments of the corresponding 
curvatures pо, qо, rо during deformation. 

The considered systems of equations describe oscillations in the space under which the 

laws of elasticity can be violated [8]. 

When the spring oscillates around the static equilibrium position of the curvature, the 

internal forces and the moments of forces are the sums of their initial values and increments 

[9, 10]. When considering fluctuations, the corresponding values are recorded: 

 𝑝𝑝 = 𝑝𝑝𝑜𝑜 + 𝑝𝑝∗,   𝑞𝑞 = 𝑞𝑞𝑜𝑜 + 𝑞𝑞∗,   𝑟𝑟 = 𝑟𝑟𝑜𝑜 + 𝑟𝑟∗, 

 𝑄𝑄𝑥𝑥 = 𝑄𝑄𝑥𝑥𝑜𝑜 + 𝑄𝑄х∗,  𝑄𝑄у = 𝑄𝑄у𝑜𝑜 + 𝑄𝑄у∗,  𝑄𝑄𝑧𝑧 = 𝑄𝑄𝑧𝑧𝑜𝑜 + 𝑄𝑄𝑧𝑧∗ 
 𝑀𝑀𝑥𝑥 = 𝑀𝑀𝑥𝑥𝑜𝑜 +𝑀𝑀х

∗,  𝑀𝑀у = 𝑀𝑀у𝑜𝑜 +𝑀𝑀у
∗,  𝑀𝑀𝑧𝑧 = 𝑀𝑀𝑧𝑧𝑜𝑜 +𝑀𝑀𝑧𝑧

∗     (4) 
Where Qxo, Qyo, Qzo are  the values of the internal forces along the axes OX, OU, OZ in the 

material of the spring, which is in the position of static equilibrium; Qx*, Qy*, Qz* are the  

increments of forces Qxo, Qyo, Qzo with fluctuations; Мxo, Мyo, Мzo are the values of the 

moments of internal forces along with the axes OX, OU, OZ in the spring material, which is 

in the position of static equilibrium; Мx*, Мy*, Мz*  are moment increments Мxo, Мyo, Мzo 

with vibrations. 

With minor oscillations of the spring element, the increments of the quantities are much 

less than the initial values, which simplifies the system (2). The substitution in (2) of 

expressions (4) is carried out with the exception of products of small quantities Qz*q*, Qу*r*, 

Qx*r*, Qz*p*, Qу*p*, Qx*q*, Mz*q*, Mу*r*, Mx*r*, Mz*p*, Mу*p*, and Mx*q*.  

The system of linear differential equations describing the process of spatial oscillations 

of the spring, after substituting (4) into (2) and excluding small second-order quantities, is 

written as: 

  𝜕𝜕𝑄𝑄х∗

𝜕𝜕𝜕𝜕
+ 𝑄𝑄𝑧𝑧𝑜𝑜𝑞𝑞𝑜𝑜 + 𝑄𝑄𝑧𝑧𝑜𝑜𝑞𝑞∗ + 𝑄𝑄𝑧𝑧∗𝑞𝑞𝑜𝑜 − 𝑄𝑄у𝑜𝑜𝑟𝑟𝑜𝑜 − 𝑄𝑄у𝑜𝑜𝑟𝑟∗ − 𝑄𝑄у∗𝑟𝑟𝑜𝑜 − 𝑞𝑞𝑥𝑥 = 0, 

𝜕𝜕𝑄𝑄у∗

𝜕𝜕𝜕𝜕
+ 𝑄𝑄𝑥𝑥о𝑟𝑟𝑜𝑜 + 𝑄𝑄𝑥𝑥о𝑟𝑟∗ + 𝑄𝑄𝑥𝑥∗𝑟𝑟𝑜𝑜 − 𝑄𝑄𝑧𝑧о𝑝𝑝𝑜𝑜 − 𝑄𝑄𝑧𝑧𝑜𝑜𝑝𝑝∗ − 𝑄𝑄𝑧𝑧∗𝑝𝑝𝑜𝑜 − 𝑞𝑞у = 0, 
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𝜕𝜕𝑄𝑄𝑧𝑧∗

𝜕𝜕𝜕𝜕
+𝑄𝑄уо𝑝𝑝𝑜𝑜 + 𝑄𝑄у𝑜𝑜𝑝𝑝∗ +𝑄𝑄у∗𝑝𝑝𝑜𝑜 − 𝑄𝑄𝑥𝑥𝑜𝑜𝑞𝑞𝑜𝑜 − 𝑄𝑄𝑥𝑥𝑜𝑜𝑞𝑞∗ − 𝑄𝑄𝑥𝑥∗𝑞𝑞𝑜𝑜 − 𝑞𝑞𝑧𝑧 = 0, 

𝜕𝜕𝑀𝑀х
∗

𝜕𝜕𝜕𝜕
+𝑀𝑀𝑧𝑧𝑜𝑜𝑞𝑞𝑜𝑜 +𝑀𝑀𝑧𝑧𝑜𝑜𝑞𝑞∗ +𝑀𝑀𝑧𝑧

∗𝑞𝑞𝑜𝑜 −𝑀𝑀у𝑜𝑜𝑟𝑟𝑜𝑜 −𝑀𝑀у𝑜𝑜𝑟𝑟∗ −𝑀𝑀у
∗𝑟𝑟𝑜𝑜 − 𝑄𝑄уо −𝑄𝑄у∗ −𝑚𝑚𝑥𝑥 = 0, 

𝜕𝜕𝑀𝑀у
∗

𝜕𝜕𝜕𝜕
+𝑀𝑀𝑥𝑥о𝑟𝑟𝑜𝑜 +𝑀𝑀𝑥𝑥о𝑟𝑟∗ +𝑀𝑀𝑥𝑥

∗𝑟𝑟𝑜𝑜 −𝑀𝑀𝑧𝑧о𝑝𝑝𝑜𝑜 −𝑀𝑀𝑧𝑧𝑜𝑜𝑝𝑝∗ −𝑀𝑀𝑧𝑧
∗𝑝𝑝𝑜𝑜 + 𝑄𝑄хо +𝑄𝑄𝑥𝑥∗ −𝑚𝑚у = 0, 

𝜕𝜕𝑀𝑀𝑧𝑧
∗

𝜕𝜕𝜕𝜕
+𝑀𝑀уо𝑝𝑝𝑜𝑜 +𝑀𝑀у𝑜𝑜𝑝𝑝∗ +𝑀𝑀у

∗𝑝𝑝𝑜𝑜 −𝑀𝑀𝑥𝑥𝑜𝑜𝑞𝑞𝑜𝑜 −𝑀𝑀𝑥𝑥𝑜𝑜𝑞𝑞∗ −𝑀𝑀𝑥𝑥
∗𝑞𝑞𝑜𝑜 −𝑚𝑚𝑧𝑧 = 0.   (5) 

The system of equations, in contrast to the equations obtained by the author [2], takes 

into account the forces Qх*, Qу*  , and the products of initial forces, moments, curvatures 

Qzoqo, Qyoro, Qxoro, Qzopo, Qyopo, Qxoqo, Mzoqo, Myoro, Mxoro, Mzopo, Myopo, and Mxoqo. 

In (5), the projections of the vectors q, m on the OX, OU, OZ axes, with a periodic 
external load, are respectively equal to the sum of the distributed inertial forces or moments: 

  𝑞𝑞𝑥𝑥 = 𝜌𝜌𝜌𝜌 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2

+ 𝑞𝑞внх, 

  𝑞𝑞у = 𝜌𝜌𝜌𝜌 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2

+ 𝑞𝑞вну, 

  𝑞𝑞𝑧𝑧 = 𝜌𝜌𝜌𝜌 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2

+ 𝑞𝑞вн𝑧𝑧, 

  𝑚𝑚𝑥𝑥 = 𝜌𝜌𝐽𝐽𝑥𝑥
𝜕𝜕2𝜙𝜙х
𝜕𝜕𝑡𝑡2

+𝑚𝑚внх, 

  𝑚𝑚у = 𝜌𝜌𝐽𝐽у
𝜕𝜕2𝜓𝜓у
𝜕𝜕𝑡𝑡2

+𝑚𝑚вну, 

  𝑚𝑚𝑧𝑧 = 𝜌𝜌𝐽𝐽𝑧𝑧
𝜕𝜕2𝛩𝛩𝑧𝑧
𝜕𝜕𝑡𝑡2

+𝑚𝑚вн𝑧𝑧,           (6) 

where Jx, Jу, Jz are the moments of inertia of the cross-section of the wire spring along 

with the ОХ, ОУ, ОZ axes; qхвн, qувн, qzвн, mxвн, mувн, mzвн are the intensity of external forces 

and moments along with the axes OX, OU, OZ. 

Substituting the Equations (6) into (5), and combining them with the Clebsch equations 

allows us to obtain the system: 

𝜕𝜕𝑄𝑄х∗

𝜕𝜕𝜕𝜕
+ 𝑄𝑄𝑧𝑧𝑜𝑜𝑞𝑞𝑜𝑜 + 𝑄𝑄𝑧𝑧𝑜𝑜𝑞𝑞∗ + 𝑄𝑄𝑧𝑧∗𝑞𝑞𝑜𝑜 − 𝑄𝑄у𝑜𝑜𝑟𝑟𝑜𝑜 − 𝑄𝑄у𝑜𝑜𝑟𝑟∗ − 𝑄𝑄у∗𝑟𝑟𝑜𝑜 = 𝜌𝜌𝜌𝜌

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ 𝑞𝑞вн𝑥𝑥, 

𝜕𝜕𝑄𝑄у∗

𝜕𝜕𝜕𝜕
+ 𝑄𝑄𝑥𝑥о𝑟𝑟𝑜𝑜 + 𝑄𝑄𝑥𝑥о𝑟𝑟∗ +𝑄𝑄𝑥𝑥∗𝑟𝑟𝑜𝑜 − 𝑄𝑄𝑧𝑧о𝑝𝑝𝑜𝑜 − 𝑄𝑄𝑧𝑧𝑜𝑜𝑝𝑝∗ − 𝑄𝑄𝑧𝑧∗𝑝𝑝𝑜𝑜 = 𝜌𝜌𝜌𝜌

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑡𝑡2

+ 𝑞𝑞вну, 

𝜕𝜕𝑄𝑄𝑧𝑧∗

𝜕𝜕𝜕𝜕
+ 𝑄𝑄уо𝑝𝑝𝑜𝑜 + 𝑄𝑄у𝑜𝑜𝑝𝑝∗ + 𝑄𝑄у∗𝑝𝑝𝑜𝑜 − 𝑄𝑄𝑥𝑥𝑜𝑜𝑞𝑞𝑜𝑜 − 𝑄𝑄𝑥𝑥𝑜𝑜𝑞𝑞∗ − 𝑄𝑄𝑥𝑥∗𝑞𝑞𝑜𝑜 = 𝜌𝜌𝜌𝜌

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

+ 𝑞𝑞вн𝑧𝑧, 

𝜕𝜕𝑀𝑀х
∗

𝜕𝜕𝜕𝜕
+𝑀𝑀𝑧𝑧𝑜𝑜𝑞𝑞𝑜𝑜 +𝑀𝑀𝑧𝑧𝑜𝑜𝑞𝑞∗ +𝑀𝑀𝑧𝑧

∗𝑞𝑞𝑜𝑜 −𝑀𝑀у𝑜𝑜𝑟𝑟𝑜𝑜 −𝑀𝑀у𝑜𝑜𝑟𝑟∗ −𝑀𝑀у
∗𝑟𝑟𝑜𝑜 − 𝑄𝑄уо −𝑄𝑄у∗

= 𝜌𝜌𝐽𝐽𝑥𝑥
𝜕𝜕2𝜙𝜙𝑥𝑥
𝜕𝜕𝑡𝑡2

+𝑚𝑚вн𝑥𝑥, 
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𝜕𝜕𝑀𝑀у
∗

𝜕𝜕𝜕𝜕
+𝑀𝑀𝑥𝑥о𝑟𝑟𝑜𝑜 +𝑀𝑀𝑥𝑥о𝑟𝑟∗ +𝑀𝑀𝑥𝑥

∗𝑟𝑟𝑜𝑜 −𝑀𝑀𝑧𝑧о𝑝𝑝𝑜𝑜 −𝑀𝑀𝑧𝑧𝑜𝑜𝑝𝑝∗ −𝑀𝑀𝑧𝑧
∗𝑝𝑝𝑜𝑜 + 𝑄𝑄хо + 𝑄𝑄𝑥𝑥∗

= 𝜌𝜌𝐽𝐽у
𝜕𝜕2𝜓𝜓у
𝜕𝜕𝑡𝑡2

+𝑚𝑚вну, 

𝜕𝜕𝑀𝑀𝑧𝑧
∗

𝜕𝜕𝜕𝜕
+𝑀𝑀уо𝑝𝑝𝑜𝑜 +𝑀𝑀у𝑜𝑜𝑝𝑝∗ +𝑀𝑀у

∗𝑝𝑝𝑜𝑜 −𝑀𝑀𝑥𝑥𝑜𝑜𝑞𝑞𝑜𝑜 −𝑀𝑀𝑥𝑥𝑜𝑜𝑞𝑞∗ −𝑀𝑀𝑥𝑥
∗𝑞𝑞𝑜𝑜 = 𝜌𝜌𝐽𝐽𝑧𝑧

𝜕𝜕2𝛩𝛩𝑧𝑧
𝜕𝜕𝑡𝑡2

+𝑚𝑚вн𝑧𝑧, 

𝜓𝜓у =
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

− 𝑣𝑣𝑟𝑟𝑜𝑜 +𝑤𝑤𝑞𝑞𝑜𝑜, 

−𝜙𝜙х =
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

− 𝑤𝑤𝑝𝑝𝑜𝑜 + 𝑢𝑢𝑟𝑟𝑜𝑜, 

𝜀𝜀 =
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

− 𝑢𝑢𝑞𝑞𝑜𝑜 + 𝑣𝑣𝑝𝑝𝑜𝑜, 

𝑝𝑝∗ =
𝜕𝜕𝜙𝜙𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑞𝑞о𝛩𝛩𝑧𝑧 − 𝑟𝑟о𝜓𝜓у, 

𝑞𝑞∗ =
𝜕𝜕𝜓𝜓у
𝜕𝜕𝜕𝜕

+ 𝑟𝑟о𝜙𝜙𝑥𝑥 − 𝑝𝑝о𝛩𝛩𝑧𝑧, 

𝑟𝑟∗ = 𝜕𝜕𝛩𝛩𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑝𝑝о𝜓𝜓у − 𝑞𝑞о𝜙𝜙𝑥𝑥.           (7) 

Equations (7) allow us to determine the linear and angular displacements of the spring 

relative to the position of static equilibrium under the action of a periodic external load, the 

values of the internal forces arising and the moments of forces. 

The formulas that determine the values of the curvature of the spring in the  static 

equilibrium state are written as: 

  𝑝𝑝𝑜𝑜 = 0,  𝑞𝑞𝑜𝑜 = 2𝑐𝑐𝑜𝑜𝜕𝜕2 𝛼𝛼
𝐷𝐷

,  𝑟𝑟𝑜𝑜 = 𝜕𝜕𝑠𝑠𝑠𝑠 2𝛼𝛼
𝐷𝐷

.       (8). 

Internal forces and moments of forces for a fixed spring, taking into account the 

smallness of the forces that have arisen after its winding during manufacture, are determined 

by: 

  𝑄𝑄𝑥𝑥о = 0,  𝑄𝑄уо = 𝑃𝑃 𝑐𝑐𝑐𝑐𝜕𝜕 𝛼𝛼, 𝑄𝑄𝑧𝑧о = 𝑃𝑃 𝜕𝜕𝑠𝑠𝑠𝑠 𝛼𝛼,      (9) 

  𝑀𝑀хо = 0,  𝑀𝑀уо = 𝑃𝑃𝐷𝐷
2
𝜕𝜕𝑠𝑠𝑠𝑠 𝛼𝛼, 𝑀𝑀𝑧𝑧о = 𝑃𝑃𝐷𝐷

2
𝑐𝑐𝑐𝑐𝜕𝜕 𝛼𝛼     (10) 

The moments of the inertia Jх, Ju of the cross section of the wire spring with constant 

diameter are the equatorial moments of inertia J of this section.  The moment of inertia Jz 

is the polar moment of inertia Jо of the cross-section: 

  𝐽𝐽𝑧𝑧 = 𝐽𝐽𝑜𝑜 = 𝜋𝜋𝑑𝑑4

32
.            (11) 

The resulting increments of the vector of internal momentum M with oscillations along 

the axes of the rotating system OX, OU, OZ (Figure 1) are proportional to the increment of 

the curvature vector: 

  𝑀𝑀𝑥𝑥
∗ = 𝐸𝐸𝐽𝐽𝑝𝑝∗,  𝑀𝑀у

∗ = 𝐸𝐸𝐽𝐽𝑞𝑞∗,  𝑀𝑀𝑧𝑧
∗ = 𝐺𝐺𝐽𝐽𝑜𝑜𝑟𝑟∗       (12) 
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where G is the modulus of the elasticity of the second kind. 
The increase in the internal force Qz arising from oscillations is found according to 

Hooke's law. 

The length of the wire L, from which the spring is twisted, is determined by the formula: 

  𝐿𝐿 = 𝜋𝜋𝐷𝐷𝑠𝑠
𝑐𝑐𝑜𝑜𝜕𝜕 𝛼𝛼

            (13). 

Distributed, periodic perturbation load acting along the axis of the ОУ of the rotating 

coordinate system leads to the appearance of an external force on the spring element: 

  𝜕𝜕𝑄𝑄увн = 𝜌𝜌𝜕𝜕𝑠𝑠 𝜕𝜕𝑠𝑠𝑠𝑠( 2𝜋𝜋
𝑇𝑇
𝑡𝑡)𝜕𝜕𝜕𝜕,           (14) 

where Fvn is the amplitude value of the external force distributed along the axis of the wire; 
T is the period of oscillation force. 

The value of the intensity of the distributed load, in this case, on the considered section 
is found by the formula: 

  𝑞𝑞увн = 𝜌𝜌𝜕𝜕𝑠𝑠 𝜕𝜕𝑠𝑠𝑠𝑠( 2𝜋𝜋
𝑇𝑇
𝑡𝑡).          (15), 

where qхвн, qzвн, mxвн, mувн, mzвн values from the action of the external distributed load on the 
spring along the axis of the shelter of the rotating coordinate system are equal zero. 

System (7), taking into account (8), (9), (10), (12), (15), is written as: 

𝜕𝜕𝑄𝑄х∗

𝜕𝜕𝜕𝜕
+ 𝑄𝑄𝑧𝑧𝑜𝑜𝑞𝑞𝑜𝑜 + 𝑄𝑄𝑧𝑧𝑜𝑜𝑞𝑞∗ + 𝑄𝑄𝑧𝑧∗𝑞𝑞𝑜𝑜 − 𝑄𝑄у𝑜𝑜𝑟𝑟𝑜𝑜 − 𝑄𝑄у𝑜𝑜𝑟𝑟∗ − 𝑄𝑄у∗𝑟𝑟𝑜𝑜 = 𝜌𝜌𝜌𝜌

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ 𝑞𝑞вн𝑥𝑥, 

𝜕𝜕𝑄𝑄у∗

𝜕𝜕𝜕𝜕
+ 𝑄𝑄𝑥𝑥∗𝑟𝑟𝑜𝑜 − 𝑄𝑄𝑧𝑧∗𝑝𝑝𝑜𝑜 = 𝜌𝜌𝜌𝜌

𝜕𝜕2𝑣𝑣
𝜕𝜕𝑡𝑡2

+ 𝜌𝜌 𝜕𝜕𝑠𝑠𝑠𝑠( 2𝛱𝛱𝑡𝑡/𝑇𝑇), 

𝐸𝐸𝜌𝜌
𝜕𝜕𝜀𝜀
𝜕𝜕𝜕𝜕

+ 𝑄𝑄у𝑜𝑜𝑝𝑝∗ − 𝑄𝑄𝑥𝑥∗𝑞𝑞𝑜𝑜 = 𝜌𝜌𝜌𝜌
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

, 

𝐸𝐸𝐽𝐽
𝜕𝜕𝑝𝑝х∗

𝜕𝜕𝜕𝜕
+ 𝑀𝑀𝑧𝑧𝑜𝑜𝑞𝑞𝑜𝑜 + 𝑀𝑀𝑧𝑧𝑜𝑜𝑞𝑞∗ + 𝑀𝑀𝑧𝑧

∗𝑞𝑞𝑜𝑜 − 𝑀𝑀у𝑜𝑜𝑟𝑟𝑜𝑜 − 𝑀𝑀у𝑜𝑜𝑟𝑟∗ − 𝑀𝑀у
∗𝑟𝑟𝑜𝑜 − 𝑄𝑄уо − 𝑄𝑄у∗

= 𝜌𝜌𝐽𝐽𝑥𝑥
𝜕𝜕2𝜙𝜙𝑥𝑥
𝜕𝜕𝑡𝑡2

, 

𝐸𝐸𝐽𝐽
𝜕𝜕𝑞𝑞у∗

𝜕𝜕𝜕𝜕
+ (𝐸𝐸𝐽𝐽𝑟𝑟 −𝑀𝑀𝑧𝑧о)𝑝𝑝 ∗ +𝑄𝑄𝑥𝑥∗ = 𝜌𝜌𝐽𝐽у

𝜕𝜕2𝜓𝜓у
𝜕𝜕𝑡𝑡2

 

𝐺𝐺𝐽𝐽0
𝜕𝜕𝑟𝑟𝑧𝑧∗

𝜕𝜕𝜕𝜕
+ (𝑀𝑀уо𝑝𝑝𝑜𝑜 − 𝐸𝐸𝐽𝐽𝑟𝑟0)𝑝𝑝∗ + 𝑄𝑄𝑥𝑥∗ = 𝜌𝜌𝐽𝐽𝑧𝑧

𝜕𝜕2𝛩𝛩𝑧𝑧
𝜕𝜕𝑡𝑡2

+ 𝑚𝑚вн𝑧𝑧, 

𝜓𝜓у =
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

− 𝑣𝑣𝑟𝑟𝑜𝑜 + 𝑤𝑤𝑞𝑞𝑜𝑜, 

−𝜙𝜙х =
𝜕𝜕𝑣𝑣
𝜕𝜕𝜕𝜕

− 𝑤𝑤𝑝𝑝𝑜𝑜 + 𝑢𝑢𝑟𝑟𝑜𝑜, 

𝜀𝜀 =
𝜕𝜕𝑤𝑤
𝜕𝜕𝜕𝜕

− 𝑢𝑢𝑞𝑞𝑜𝑜 + 𝑣𝑣𝑝𝑝𝑜𝑜, 

𝑝𝑝∗ =
𝜕𝜕𝜙𝜙𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑞𝑞о𝛩𝛩𝑧𝑧 − 𝑟𝑟о𝜓𝜓у, 

𝑞𝑞∗ =
𝜕𝜕𝜓𝜓у
𝜕𝜕𝜕𝜕

+ 𝑟𝑟о𝜙𝜙𝑥𝑥 − 𝑝𝑝о𝛩𝛩𝑧𝑧, 
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𝑟𝑟∗ = 𝜕𝜕𝛩𝛩𝑧𝑧
𝜕𝜕𝜕𝜕

+ 𝑝𝑝о𝜓𝜓у − 𝑞𝑞о𝜙𝜙𝑥𝑥.          (16) 

A system of linear differential equations (16) is proposed in order to simplify further 

calculations to consider in vector form: 

  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐴𝐴𝐴𝐴 = 𝐵𝐵 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2

+ 𝐶𝐶,          (17) 

where Y is the vector of displacements, curvatures, and internal forces; A is 
interconnection matrix; B is a matrix of inertia forces; С is the vector of external and initial 
forces and moments.  Vectors Y and C are written as 

           

,
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The matrix A has a size of 12×12. The coefficients of the matrix are determined by the 

expressions: 

a1 2 = - ro; a1 3 = EFqo;  a1 5 = Qzo;  a1 6 = - Qyo;   

a2 1 = ro;  a2 4 = - Qzo;  a3 1 = -qo/EF;  a3 4 =  Qyo/EF; 

a4 2 = - 1/EJ; a4 5 = (Mzo - EJro)/EJ;   a4 6 = (GJoqo - Myo)/EJ; 

a5 1 = 1/EJ; a5 4 = (EJro - Mzo)/EJ;   a6 4 = (Myo - EJqo)/GJo; 

a7 8 = - ro; a7 9 = qo; a7 11 = -1; a8 7 = ro; a8 10 = 1; 

a9 3 = - 1; a9 7 = - qo; a10 4 = -1; a10 11 = -ro; a10 12 = qo; 

a11 5 = - 1; a11 10 = ro; a12 6 = -1; a12 10 = -qo. 

The matrix B also has a size of 12×12. The coefficients of the matrix are equal to: 

b1 7 = ρF;   b2 8 = ρF;   b3 9 = ρ/Е;   b4 10 = ρ/Е;   b5 11 = ρ/Е;   b6 12  = ρ/G. 

The corresponding undefined coefficients of the matrices A and B are equal to 0. 
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When solving system (17), the initial and boundary conditions are determined, which 
depend on the method of fixing the spring and its position at the initial moment of time. 
Hard end fixing and static balance allows you to write these conditions in the following 
form: 

           Y(0, t) = 0,  Y(L, t) = 0,        (18) 

           Y(s, 0) = 0,  𝝏𝝏𝝏𝝏(s, 𝟎𝟎)
𝝏𝝏𝝏𝝏  = 0.        (19) 

4. CONCLUSION 
The system of linear differential equations and conditions (18), (19) will allow 

calculating the values of linear and angular displacements of the spring, by calculating the 
corresponding values for individual sections. The equations model make it possible to 
determine the arising internal forces and moments of forces during oscillations. 

This paper shows the high complexity of solving the problem of the mechanical 
vibrations of cylindrical helical springs. The calculation of oscillations can be done by 
representing the spring as an equivalent bar, but the accuracy of determining the parameters 
of deviations under the influence of external forces is approximate.  The solution of the 
system of differential equations of vibrations is a difficult task.  The transition to the vector 
form of writing oscillations equations allows us to simplify the form of the record and will 
allow the appliance of the finite element method to solve the considered system. 
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