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trading strategies. (Moradi & Rafiei, 2019; Zhong & Enke, 2019). 
As the importance and predictability of financial markets are supported by previous studies 

(Fama, 1965; Malkiel & Fama, 1970) but when it comes to the modeling techniques for forecasting 
there is no consensus. The dispute is much related to the nature of the data financial markets generate. 
The long-term investors are more concerned about the fundamentals of companies like price-earnings 
ratio, revenue, expenses, assets, liabilities, management policy and financial ratio (Lam, 2004). 
Whereas, short-term investors rely on price movements of stock, understanding market behavior 
through different market features (Murphy, 1986). Technicians avoid the analysis of all economic 
factors by focusing on pattern recognition of price considering this information enough for future 
price determination (Hu et al., 2015; Patel et al., 2015; Teixeira & De Oliveira, 2010; Żbikowski, 
2015). Tsinaslanidis and Kugiumtzis (2014) use numerous technical indicators for market analysis 
which is time-series data in nature. Huang et al. (2019) also use different momentum and volatility 
indicators for bitcoin predictive analysis. 

For short-term prediction, traditional forecasting models consider time series data as a linear 
process and apply the smoothening and autoregressive process to predict future price movement 
(Kumar & Murugan, 2013; Lin et al., 2012; Wang et al., 2012). Financial time series are complex, 
nonlinear, dynamic and chaotic. Soft computing models can capture this nonlinear behavior (Cheng 
& Wei, 2014; Huang & Tsai, 2009; Lee, 2009).  Tay and Cao (2001) compare artificial neural 
networks (ANN) and support vector machines (SVM) and confirm their suitability for prediction of 
the stock market. Huang, et al. (2005) use SVM for predicting the directional movement of the 
NIKKIE 225 index. Kara et al. (2011) also employ SVM and ANN for predicting the Istanbul Stock 
Exchange. 

Our work is an addition to existing literature to settle the debate amongst traditional forecasting 
models and soft computing models for trading signals prediction. All the existing literature is related 
to price prediction, completely ignoring the trading signals forecasting that can enlighten investors 
about entry and exist decisions. Secondly, we also focused on the relevant feature selection to 
improve the predictive ability of models and to better understand market behavior. Lastly, our 
analysis confirms the nonlinear and dynamic nature of financial time series data negating the 
assumption of traditional forecasting models. 

2. LITERATURE REVIEW 
In the past ten years, various time series methodologies have been developed for financial market 

forecasting that helps improve investment decisions (Teixeira & De Oliveira, 2010). Traditional 
forecast models and soft computing models are two major approaches (Wang et al., 2011). In both 
modeling approaches, financial data is considered as a time series data which is actually numerical 
observations accumulated in sequential order over a period of time. (Brockwell & Davis, 2009; B. 
Wang et al., 2012). This organization of financial data enables model developers to utilize time series 
tools to understand market behavior (Oliveira & Meira, 2006). Further, these tools pave a way to do 
data mining tasks, such as classification, trend analysis, seasonal effect, cycles and extreme event 
detection (Cryer & Chan, 2008). 

The traditional models involve averages, regression and autoregressive models based on the 
linearity of normally distributed variables (Lin et al., 2012; Wang et al., 2012). In reality, financial 
time series data is dynamic, chaotic, nonlinear and highly volatile which makes its prediction 
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complex as compare to other non-financial time-series data (Vanstone & Finnie, 2009). Financial 
time series inherit these characteristics from economic factors, investor’s sentiments, political events 
and movement of other stock markets (Kara et al., 2011). 

The nature of financial time series data calls for flexible and adaptive models for future price 
prediction (Huang & Tsai, 2009) and soft computing models serve the purpose (Lin et al., 2012). Soft 
computing models, such as artificial neural networks, support vector machine and extreme learning 
machine give better predictions with high accuracy (Lee, 2009). Most of the soft computing models 
can handle nonlinear relations through relevant market features with less statistical assumptions 
(Atsalakis & Valavanis, 2009). Weng et al. (2017) find that soft computing models are appropriate for 
developing rules when using with a rich knowledge database. Zhong and Enke (2017) conclude a 
trading strategy based on classification models yield high returns than the benchmark T-bill strategy. 
Liang et al. (2009) find that the non-parametric model outperforms parametric models in financial 
market forecasting. As soft computing models are self-adaptive and are more tolerant of imprecision 
(Cheng & Wei, 2014). Hence, we investigate whether these findings hold for trading signals 
prediction of Pakistan stock exchange or not. 

3. METHOD 
3.1 DATA 

We use the Pakistan Stock Exchange (KSE-100 index) daily quotes from 7/02/1997 to 
18/07/2018 with the total observations 5168. The data set is bifurcated into a training dataset and 
testing dataset. The training dataset has 3764 observations cover 70% of total observations and the 
testing set has 1404 observations include the remaining 30% of total observation. 

3.2 TARGET VARIABLE “T” 
The target variable T (Equation 1) gives a holistic picture of stock prices by incorporating overall 

dynamics in the following days. This cannot be merely done through price movements, therefore, the 
target variable is defined as the sum of all variation above an absolute value of target margin 𝑥%  
(Torgo, 2011) 𝑇 = ෍( 𝑣 ∈ 𝑉௜: 𝑣 > 𝑥% ∨ 𝑣 < −𝑥%) (1) 

where 𝑉௜ (Equation 2) is k percentage variation of current close price and the following k days price 

average. 

𝑉௜ = ቊ𝑃ത௜ା௝ − 𝐶௜𝐶௜ ቋ௝ୀଵ
௞

 
(2) 

and the daily average price is computed as Equation 3. 

𝑃ത௜ = 𝐶௜ + 𝐻௜ + 𝐿௜3  (3) 

𝐶௜, 𝐻௜ 𝑎𝑛𝑑 𝐿௜ are close, high and low prices for the day i respectively. 

The target variable is T value and develops a model that predicts this value by using the feature’s 
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3.4.1 TRADITIONAL MODELS 

We first explain the simple moving average, centered moving average, right-aligned moving 
average, exponential weighted moving average then move to autoregressive moving average model. 

Simple Moving Average (SMA) is the average of n prices (Equation 5) where each observation is 
given equal weight. If we take difference of the two of SMA values at times t and t-1, it gives 
Equation 6 and recursive form become as Equation 7 which improves the computational speed of 
SMA in real-life scenarios (Zakamulin, 2017) by reducing total n operations involve in Equation 5 to 
just three mathematical operations (Equation 8) irrespective of the length of averaging window 
length. 

𝑆𝑀𝐴௧(𝑛) = 1𝑛 ෍ 𝑃௧ି௜௡ିଵ
௜ୀ଴  (5) 

𝑆𝑀𝐴௧(𝑛) − 𝑆𝑀𝐴௧ିଵ(𝑛) = 𝑃௧ − 𝑃௧ି௡𝑛  (6) 

𝑆𝑀𝐴௧(𝑛) = 𝑆𝑀𝐴௧ିଵ(𝑛) + 𝑃௧ − 𝑃௧ି௡𝑛  (7) 

The Herfindahl index of SMA (Rhoades, 1993) equals  ଵ௡ ; hence defining the smoothness of 

SMA(n) as (ଵ௡)ିଵ = 𝑛. The increase in the average window length not only increases its smoothness 

but also increases the average lag time of SMA which is a linear function of smoothness (Equation 9). 𝐿𝑎𝑔 𝑡𝑖𝑚𝑒(𝑆𝑀𝐴௡) = ∑ 𝑖௡ିଵ௜ୀଵ∑ 𝑖௡ିଵ௜ୀ଴ = 𝑛 − 12  (8) 

𝐿𝑎𝑔 𝑡𝑖𝑚𝑒(𝑆𝑀𝐴௡) = 12 × 𝑆𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠(𝑆𝑀𝐴௡) − 12 (9) 

 
It is quite easy to find a trend and breakthroughs in a trend by looking on historical data 

considering time series data of 𝑃௧ as a combination of trend 𝑇௧ and an irregular component called as 
noise 𝐼௧. Then, an additive model can be written as Equation 10. Noise is a short-lived variation 
around the trend eliminated through centered moving average or other smoothening tools. Any 
average of time series data is computed using a fixed window length that rolls through time. This 
window length is called an averaging period. In case of centered moving average if n is the window 
length then it consists of a center and two halves of length k such that n = 2k + 1. Since centered 
moving average at time t (equation11) removes noise so the value of CMA is the value of trend in the 
given time series data. The window length n is selected keeping in mind the elimination of noise 
(Equation 12) 𝑃௧ = 𝑇௧ + 𝐼௧ (10) 

𝐶𝑀𝐴௧ = 1𝑛 ෍ 𝑃௧ି௜௡ିଵ
௜ୀ଴  (11) 
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Tt = 𝐶𝑀𝐴௧ (n) (12) 

In real life, an analyst is interested in the forecasting of time series t + 1 given the historical data 
series t (Equation 13). 

𝑅𝑀𝐴௧ = 1𝑛 ෍ 𝑃௧ି௜௡ିଵ
௜ୀ଴  

(13) 

 
Mathematical comparison of centered moving average and right-aligned moving average (RMA) 

at a given time t leads to the conclusion that 𝑅𝑀𝐴௧ is equal to 𝐶𝑀𝐴௧ି௞ (Equation 11). In fact, RMA 
is a lagged version of CMA given the same window length and shares the same properties of CMA. 
Particularly, RMA with longer window length is better at removing noise from the data series but this 
comes with longer lag time. The lag time is given as Equation 15 𝑅𝑀𝐴௧(𝑛) = 𝐶𝑀𝐴௧ି௞(𝑛) (14) 

𝑙𝑎𝑔𝑡𝑖𝑚𝑒 = 𝑘 − 𝑛 − 12  (15) 

However, the linearly weighted moving average has the drawback that it assigns the same weight 
to all observations ignoring the importance of recent observation in future prediction. This problem is 
addressed by exponential moving average (EMA), using the concept of exponential factor λ 
(Equation 16). The value of λ can be greater than zero and less than or equal to 1. 𝐸𝑀𝐴௧(𝜆, 𝑛) = ∑ 𝜆௜𝑃௧ି௜௡ିଵ௜ୀ଴∑ 𝜆௜௡ିଵ௜ୀ଴  

(16) 

 
Autoregressive Integrated Moving Average (ARIMA) is the most commonly used forecasting 

model amongst traditional forecasting models. It is a generalized version of ARMA (autoregressive 
moving average) when used for differenced data rather than original data series. Orders of AR part 
(p), the difference (d) and MA (q) part specify the ARMA model and the model is said to be of 
order (p,d,q). However, AR and MA are different models for stationary time series and ARMA (and 
ARIMA) is a hybrid form of these two models for a better fit. The steps of building ARIMA models 
are explained as follows. 

Auto Regression (AR) is a class of linear models where the dependent variable is regressed 
against its own lagged values. If 𝑦௧ is modeled via the AR process, it is written as Equation 17 
similar to simple linear regression. It has an intercept like term (δ), regressors 𝑦௧ି௜, and parameters ∅௧ି௜ an error term 𝜀௧. The only special thing is that regressors are the dependent variable’s own 
lagged terms. If lag up to p is included in the model, the AR process is said to be of order p. 𝑦௧ = 𝛿 + ∅𝑦௧ିଵ + ∅ଶ𝑦௧ିଶ + ⋯ + ∅௣𝑦௧ି௣ + 𝜀௧ (17) 

Moving Average (MA) is another class of linear models. In MA, the output or the variable of 
interest is modeled via its own imperfectly predicted values of current and previous times. It can be 
written in terms of error terms as Equation 18. 

 𝑦௧ = 𝜇 + 𝜃ଵ𝜀௧ିଵ + 𝜃ଶ𝜀௧ିଶ + ⋯ + 𝜃௤𝜀௤ିଵ + 𝜀௧ (18) 
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Again, it has a form similar to classic linear regression. The regressors are the imperfections 
(errors) in predicting previous terms. Here the model is specified with a positive sign for the 
parameters. It is not uncommon where we have a negative sign for the parameters. The model above 
include errors for q lags and said to have an order of q. In the case of differenced data ARIMA (p,d,q) 
become ARMA(p,q) having the mathematical form as Equation 19. 

 𝑦௧ = 𝛿 + ෍ ∅௜𝑦௧௣
௜ୀଵ + ෍ ∅௝𝜀௧ି௝௤

௝ୀଵ + 𝜀௧ (19) 

3.4.2 SOFT COMPUTING MODELS 

Artificial Neural Network (ANN) is a nonlinear regression technique and popularly used for 
stock market prediction (Zhiqiang et al., 2013). This field is tracked back to (McCulloch & Pitts, 
1943) mathematical function perceived as a model of biological neural network. This model of the 
neural network comprises three components: weighted inputs that are like synapses in the human 
brain. Adder- The summation of all input signals corresponds to the neuron membrane which 
assembles all electrical charges. Activation function- determines if a neuron has an action potential 
for a specific set of inputs (Algorithm 1). 
 

ALGORITHM 1 Artificial Neural Network 

1. Start with small random weights  
2. Input the data set 
3. For forwarding phase: hidden layer compute activation function of each neuron then 

calculate the activation function of output 
4. For the backward phase: calculate error at the output and at the hidden layers then update 

the weights of both layers 
5. For recall apply the forward phase described in step 3 

When it comes to the interpretation of ANN it’s more like a black box. Therefore, Support vector 
machines (SVMs) apply the concept of margin to solve the problem of ANN. SVM easily separates 
the data by mapping it into high dimensions (Boser et al., 1992). By aiming to maximize the size of 
margin that classifies the objects without any point lying inside. 

 
ALGORITHM 2 Support Vector Machine 

1. Begin with an input data set 
2. Classify the data set 
3. Apply SVM with a different kernel function 
4. Specify hyperplane 
5. Repeat step 3 if obtained accuracy is not obtained 

 
The learning speed of ANN and SVM is slower than what is required because of slow 

gradient-based learning algorithms. Whereas the Extreme Learning Machine (ELM) randomly 
selects hidden nodes and analytically finds the output weights (Algorithm 3). 
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in Table 4. The analysis of traditional econometric techniques only ARMA (1,1,1) is the best model 
but the precision score is quite low (Table 5). These results are in line with previous studies (Hsu, 
Lessmann, Sung, Ma, & Johnson, 2016; Rojas et al., 2008) which also assert the better predictive 
performance of soft computing models over traditional models. 
 

Table 5: Comparison of Best Traditional Model and Best Soft Computing Model 
Model Type Model Precision Score 

Traditional Model ARMA(1,1,1) 0.1333 
Soft Computing Model ANN 0.6311 

5. CONCLUSION 
This study brings forward the unsettled debate in the literature about modeling techniques for 

trading signals prediction. We cover a vast range of models from moving averages to autoregressive 
models and then soft computing models. Our detailed analysis finds the best of the traditional models 
and best of soft computing models but soft computing models perform better than traditional 
forecasting models for trading signals prediction. These findings are important for traders who can 
forecast trading signals on the basis of the soft computing model rather than the traditional model. 
Our analysis also confirms the non-linear behavior of time series financial data which can be better 
handled through the soft computing model. 

6. AVAILABILITY OF DATA AND MATERIAL 
Data can be made available by contacting the corresponding authors 
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