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 Problem statement:  Usually, we want to represent the final 
computer aided drawings in a detailed characterization of the design 
geometry.  In some cases, the final design is corrupted with additional 
geometry parameters, which are not part of the problem, and lack of 
dimensions.  We need an automatic approach to resolve this issue.  
Approach: Here, we develop a toolkit, which integrates SIEMENS 
NX8 and C++, to improve the characterization process for 2D 
geometries.  Results:  We applied the tool to several different 2D 
cross-sections and proved that we were able to removal the unwanted 
parts from the geometry and apply the proper dimensions and 
constraints to the geometry.  Conclusion: This makes the 2D geometry 
characterization process faster and user-friendly. 
 

 2014 Am. Trans. Eng. Appl. Sci.    

1. Introduction 
Many tools are currently available for assisting an engineer, or designer, in the dimensioning or 

constraint characterization process of a solid model or 2D drawing.  These systems and tools each 

advance the design process and help make dimensioning or constraint application more useful 

within the modeling software environment in use but may require significant and time-consuming 

user input to achieve the desired results.  To characterize a design within Solid Modeling software 

packages the designer will have to use several tools including parametric and constraint-based 
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modeling and a proper dimensioning scheme for the accurate description of said design.  Current 

solid modeling software requires manual and time consuming manipulation of the geometry for the 

correct implementation of dimensions and constraints for future development and referencing of 

the design.  We need to - that the design’s integrity will remain after any modifications are done to 

it, while avoiding over constraining the geometry.  Also, if the drawings were to become 

corrupted, or if the user tried to extract lines from a section view of a 3D model, or if the user were 

to import the geometry into the CAD software using a scanning tool, unneeded geometry might 

become present, which the user must carefully select and manually remove. This process will take 

a tremendous amount of time if the design consists of hundreds of objects.  In addition, the 

dimensioning and constraint application will be difficult to accomplish, usually requiring multiple 

steps in the process. 

 
Hence, we created a tool using NX’s open architecture in conjunction with Visual C++ to 

characterize 2D geometries, automatically remove unwanted geometry parts, and apply 

dimensions and geometric constraints.  With this tool, the designer will reduce the 

characterization time. 

2. Background and Motivation 
For any successful engineering process, drawings providing a detailed description of ideas and 

specifications are essential.  These drawings must accurately depict a detailed characterization of 

the design geometry to be successfully implemented in the design and manufacturing process. In 

some cases, a design might become corrupted or if importing the sketches to NX8 utilizing a 

scanning tool, errors might be encountered resulting in additional lines, lack of dimensions and 

geometrical constraining.  In such cases, we would need to remove manually the unwanted items 

before dimensioning and constraining can added to the model.  Using SIEMENS NX8 and their 

open architecture NX OPEN, we developed a toolkit using C++, with the purpose of improving the 

characterization process of dimensional geometry, in hopes of making the characterization a faster 

and more user-friendly one.  We can use this toolkit to add constraint and dimensioning to 

unconstrained sketches created out of the sketcher environment, shall the user decide to do so, 

regardless of whether or not the sketch includes any unwanted geometry. 

 
For the creation and implementation of this tool Microsoft C++ was utilized in conjunction to 
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SIEMENS NX8.  Referencing functions available to the user within the NX OPEN library, we 

wrote a code and then compiled it into a dynamic-link library (.dll) file.  With an OPEN NX8 

session and with the geometry of interest in hand, we may execute the toolkit using CTRL+U to 

call the Execute User Function dialog and navigate to the .dll file.  For proof of concept, 

completely unconstrained geometry created for the tests, this is done outside the Sketch 

environment. With the tool menu already on screen, the user proceeds to select the adequate lines 

and dimensioning and constraining will be added to the lines.  We need to be careful when 

selecting the “Cancel” option once the user has selected each type of line.  The final product will 

be a new dimensioned and constrained sketch free of extra lines. 

2.1 Solid Modeling 
Solid modeling software creates a virtual representation of components for machine design, 

analysis and manufacturing.  Figure 1 shows the manyseveral ways to describe a solid model.  

These methods allow the designer to, accurately, describe a design.  Our work is part of the 

modeling and analysis of 2D views taken from three-dimensional solid models. 

 
Figure 1:  Simple Representation of Solid Modeling. 

2.2 Parametric Modeling 
Parametric modeling is a characterization process that uses parameters to define a model.  The 

parameters may be modified later, and the model will update to reflect the modification.  Figure 2 

shows an airfoil model geometry constrained by user-defined parameters.  These parameters are 

highlighted on the left.  Typically, there is a relationship between parts, assemblies, and drawings.  

A part consists of multiple features, and an assembly consists of multiple parts.  We can make the 
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drawings from either parts or assemblies.  We can visualize the constraint-based geometry as a 

general framework from which a parameterized system is a special case.  Parametric design 

specification is one of the possible alternatives available within a constraint-based representation 

[1]. 

 
Maarten and Van [2] discussed the creation and modification of parametric solid models by 

graphical interaction.  Their primary concern was to define relations between among geometric 

properties of constructive solid geometry primitive.  The system they described is capable of 

changing dimensions and position of a geometric model as a whole, without changing the object 

description.  The system cannot handle user-defined constraints and does not address the removal 

of any excess geometry, restricting the editing and characterization process. 

 

 
Figure 2: Parameterized airfoil geometry with list of parameters displayed. 

2.3 Constraint-Based Modeling 
Constraint-based geometry is a technique by which we may define or constrain an arbitrary 

geometry using its dimensions, as shown in Figure 3.  In constraint-based geometry, a number of 

characteristic points in a three-dimensional space determines an object.  Instead of using the 

geometry to define the dimensions, constraint-based geometry uses the dimensions to define its 

geometry.  We use dimensions to relate geometrical elements such as points, lines, arcs or circles.  

We may graphically represent these relations in the design’s drawings using dimension parameters.  

Dimensioning and constraint-based geometry help the designer in the definition of the object and 

the use of geometrical dimensions as part of design specifications.  Our work allows a designer to 

define constraints to selected objects within 2D geometry. 
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Figure 3:  Triangular geometry constrained by its dimensions. 

 

Light and Gossard et al [3] discuss a constraint-based method for modification of geometric 

models.  They present a procedure for minimizing computational effort in the solution of the 

constraints and a procedure for detecting invalid dimensioning schemes. Suzuki et al [4] discuss 

the importance of geometric constraints and reasoning in CAD systems.  One characteristic of 

design is constraint solving, an essential portion of these constraints being geometrical.  They 

present a consistent framework for representing geometric models and constraints, and a geometric 

reasoning mechanism to solve those constraints.  Their implementation is limited to the 2D case 

and they use constraint propagation to determine the parameter values.  They clearly state that 

their method can only make geometrical changes to a fixed topology. 

 
Pérez [5] proposed a methodology to be implemented in a three dimensional constraint-based 

finite element modeler to allow a designer to interactively construct a geometric model by 

dimensional changes that are propagated to the finite element model.  The system also allowed for 

optimization analysis without requiring explicit parametric definitions from the user.  Pérez [5] 

validated the system by conducting experiments and showed a significant saving time when 

compared to previously available systems. 

 
All of these systems propose mathematical methods for constraint or dimension calculation 

and management but do not provide an actual application to use in an existing drawing or an 

application for removal of geometries that we do not need. 
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2.4 Dimensioning 
The purpose of dimensioning engineering design drawings is to help the designer understand 

the spatial arrangement of the objects’ geometry, as shown in Figure 4.  In order to provide a 

manufacturing-ready part, we need to ensure correct, precise and complete dimension for size and 

position.  There is more than one way to dimension single parts [1].  We dimension each 

component individually.  We may define a part as a collection of geometric elements having a 

closed topology.  Two parts do not share geometric elements and can be isolated without changing 

their individual characteristics [1].  This work allows the user to apply dimensions to the desired 

parts of the 2D geometry, as shown in Figure 4. 

 

 
Figure 4:  Example Dimensioning Scheme 

 
Yuen et al [6] developed a method to generate automatically dimensions based on boundary 

representations of solid models expressed as linear and angular dimensions.  This solid modeling 

system can generate an adequate dimensioning layout for a defined solid.  Light and Gossard [3] 

presented a procedure that represents a geometry by a set of dimensions which were.  They used as 

constraints limiting the locations of the characteristic points of the object.  Aldefield [7] 

represented a geometric model by a rule-based system for propagating constraint information on 

geometric structures [8]. 

 
Jaramillo [9] presented a methodology for the automatic dimensioning and use of tolerances 
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for 2D geometry.  Dones [1] presented an automatic generation of dimensioning schemes using 

constraint-based geometry.  They represented dimensions as dimensional constraint equations, in 

terms of the characteristic points defining the geometry and dimension parameters.  Dones [1] 

determined possible dimensioning schemes using a modification of the constraint management 

theory as presented by Serrano [10,11].  Pabón [8] proposed an automatic dimensioning layout 

methodology to help any CAD system with automatic dimensioning tools to locate properly the 

generated dimensions on the drawing layout using an intelligent rule based system. 

 
These systems represent mathematical methods for constraint or dimension calculation and 

management but do not provide an application to use in an existing drawing or an application for 

removal of unwanted objects from the geometry. 

3. Code 
This work focuses on developing a toolkit to help the 2D cross-sectional analysis and 

characterization process.  We used Microsoft Visual C++ software [12,13] as the main 

programming language with applicable functions and programming libraries in order to interact 

with SIEMENS NX8 [14–16] solid modeling software and analyze a 2D cross-section.  The final 

output will be a 2D drawing free of unneeded geometrical parameters and a fully dimensioned and 

constrained drawing. 

 
For the purpose of this work, we used the uf libraries [17].  These libraries allow the 

interactions between C++ code, our toolkit and SIEMENS NX8.  The program starts by 

initializing the “Open C API Environment” a command that enables the SIEMENS NX8 capability 

of being run by an external C++ code.  The program runs the six unique functions that we 

developed.  The functions read the geometry’s characteristic points in the plane and with that 

information; they calculate which objects are parts of the “desired” geometry and decide which 

ones remove.  The functions will also create dimensioning and constraining information for the 

remaining objects.  The output of this algorithm will be a geometry free of unwanted objects, with 

the desired parts dimensioned, and constrained.  This is the major contribution of this work. 

 
Figure 5 presents a problem approach flow chart.  We load the 2D drawing into the 
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SIEMENS NX8 environment and then start the toolkit within the SIEMENS NX8.  By analyzing 

and comparing the coordinates of the points that describe geometry and using position tolerances, 

we will be able to determine if the objects in the drawing are part of an enclosed area, which 

describes a sectional view.  This will allow the toolkit to segregate non-descriptive objects and 

remove them from the drawing and presenting a clean 2D section for the user to analyze.  After the 

user selects the parts he wants to dimension and constrain, the toolkit will automatically complete 

the job. 

 
Figure 5:  Problem Approach Flow Chart. 

 

 
Figure 6:  General SIEMENS NX8 and C++ Code Interaction 

 

Figure 6 shows the interaction between SIEMENS NX8 and C++.  Once the 2D geometry is 

loaded into SIEMENS NX8, the user presses CTRL+u to open the external code.  The user will 
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select the C++ code from its location in the computer’s hard drive and the program will run 

automatically within the SIEMENS NX8 environment.  The user selects all the geometry in the 

drawing and hits ok, and the program will remove the objects that are not part of the intended 2D 

geometry.  This is powerful, especially, when trying to import scanned drawings.  After the 

geometry is “cleaned-up”, the users sees the individual line select dialog boxes.  The program will 

then display the dimensions and create a geometric and dimensional constraint of the selected 

objects.  We divided the code into several functions called from the main program.  Figure 7 

shows the tool function sequence. 

 

 
Figure 7:  Functions within our C++ code. 

 

Figure 7 Function 1, layerSelectable, enables the 256 available work layers within SIEMENS 

NX8 to be user-selectable and makes layerZ the active work layer.  Function 2, selectAll, displays 

the object selection dialog, highlights the objects in the geometry and records the ID of objects into 

an array.  It then sets the objects to layerZ and makes layerZ and layerY the only active work 

layers.  Function 3, getData, records the curve properties of the objects in the array.  These 

properties are point, tangent, unit principal normal, unit normal, torsion, and radius of curvature.  
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Function 4, compare1, compares the start and end-points of all lines and arcs to determine whether 

they are part of the enclosed area that defines the cross section of interest or are excess lines that 

need to remove.  This function will start the analysis of every individual object to determine if 

they are part of the cross section of interest.  Excess lines will be set to LayerZ and good lines to 

LayerY.  Currently, we used the same SIEMENS NX8 tolerance for the coordinate comparison 

and we could improve this by defining a user to set a different tolerance.  Function 5, setLayerY, 

will set LayerY, which contains the good lines previously calculated, as the only active and shown 

work layer effectively removing excess objects from the display.  It will remove all lines saved in 

LayerZ and they thus these lines will not display.  The last function, Function 6, dimsConsts, 

displays the line selection dialog, records the curve properties and highlights the lines or arcs 

selected by the user and saves the absolute spatial coordinates of the start and end-points.  With 

this information, we are able to display dimensions and also creates dimensional and geometric 

constraints and applies them to the selected objects.  After completing all the line selection 

subroutines, the last task is to check the constrained status and degrees of freedom of the geometry.  

The resulting display within the SIEMENS NX8 environment is a geometry free of excess lines 

and with the user selected objects dimensioned and constrained and a message displayed to the user 

with information about constrained status, over-constrained, fully constrained, or how many 

constraints are required. 

4. Validation 
Now, we apply the toolkit to various examples to show the complete removal of unwanted 

items and the dimensioning and constraining of the objects within the geometry selected by the 

user. 

    
(a) Before toolkit application                 (b) After toolkit application 

 
Figure 8:  Dimensioning the word “Section”. 
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4.1 Example 1: Sketch of the Word "SECTION" 

Figure 8 consists of an arbitrary sketch that contains the word section covered by a multitude 

of unnecessary lines and arcs that cover the geometry.  After running our toolkit, we can clearly 

identify the intended geometry and see the dimensioning and constraints of the parts. 

4.2 Example 2: A machined component 
Figure 9 represents a machined component covered by a multitude of unnecessary lines and 

arcs that cover the geometry.  After running our toolkit, we can clearly identify the intended 

geometry and see the dimensioning and constraints of the parts. 

 

    
(a) Before toolkit application                 (b) After toolkit application 

 
Figure 9: Dimensioning a machined component. 

 

       
(a) Before toolkit application             (b) After toolkit application 

 
Figure 10:  Dimensioning a Wankel-Type Rotor Profile. 

4.3 Example 3: Wankel-Type Rotor from an automotive engine 
Figure 10 represents a side view of a Wankel-Type Rotor from an automotive internal 

combustion engine covered by a multitude of unnecessary lines and arcs that cover the geometry.  
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After running our toolkit, we can clearly identify the intended geometry and see the dimensioning 

and constraints of the parts. 

4.4 Example 4: Piston and rod representation 
Figure 11 shows the side view geometry representing a piston and rod from an automotive 

internal combustion engine covered by a multitude of unnecessary lines and arcs that cover the 

geometry.  After running our toolkit, we can clearly identify the intended geometry and see the 

dimensioning and constraints of the parts. 

        
(a) Before toolkit application           (b) After toolkit application 

 
Figure 11.  Dimensioning a piston and a rod. 

 

    
(a) Before toolkit application                   (b) After toolkit application 

 
Figure 12: Dimensioning a turbocharged and intercooled 4-cylinder internal combustion engine. 

4.5 Example 5: Turbocharged and intercooled 4-cylinder internal combustion 

engine 
Figure 12 represents a turbocharged and intercooled 4-cylinder internal combustion engine 

covered by a multitude of unnecessary lines and arcs that cover the geometry.  After running our 
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toolkit, we can clearly identify the intended geometry and see the dimensioning and constraints of 

the parts. 

4.6 Example 6: Airfoil Calculator 
Enclosed another example of the versatility of the code.  We developed a subroutine that is 

capable of developing a 2D geometry based on data points.  A good example is an airfoil, whose 

geometry iswe usually known in discrete points.  Given the data points, we are able to generate the 

geometry automatically in SIEMENS NX8, as shown in Figure 13.  For hereon, we can apply the 

code previously used. 

 
Figure 13: 2D Airfoil generator. 

5. Discussion 
Our proposed toolkit advances the field of computer aided design and modeling by being able 

to interact with SIEMENS NX8 and enhance its capabilities to analyze 2D cross-sections.  The 

designer will be able to view any 2D drawing, remove unwanted objects and apply characteristic 

dimensions and constraints to the geometry, improving the characterization and analysis process 

and thus saving time.  It is worth to mention, that we can expand the current toolkit to interface 

with any Solid Modeling software packages such as AutoCAD or CATIA with few modifications.  

The potential exists for this toolkit to become “universal” in its application and being able to 

interact with many different software packages.  This will make this workbe an attractive 

proposition for the industry. 

 
Prior research in the area provides a good foundation for developers to improve further the 

capabilities of our toolkit.  Automating the application of dimensions, providing the user with 
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different options for the dimensioning schemes and optimizing constraint management are some 

areas that were outside the scope of this work but can be developed by future researchers. 

6. Final Remarks 
The main objectives of this work were to improve how the current modeling software, such as 

SIEMENS NX8, to handle the dimensioning and constraining processes for 2D geometries as well 

as the removal of unnecessary objects by developing a toolkit to help make these processes more 

intuitive and user friendly. 

 
Using C++ programming language with specific software libraries and functions to interface 

with SIEMENS NX8, we developed a toolkit to analyze the 2D geometries within the modeling 

environment.  The result was a geometry that no longer contains unnecessary geometries and the 

user-selected objects are dimensioned and geometrically constrained, making it parameterized.  

This helps the designer visualize and understand the spatial relationships of the different objects 

within the geometry. 

 
We met the main scope of this with the development of a C++ toolkit that interfaces with 

SIEMENS NX8 and facilitates the removal of unnecessary objects and the application of 

dimensions and geometric constraints to the selected objects within the geometry.  We did not 

consider the layout of the dimensions because it was not within the scope of our work and remains 

as an open issue for future work.  The automation of the different processes within the tool, such 

as dimensioning and constraint application, constraint management and optimization techniques; 

also remain as open issues for future developments. 

 
Although the resulting output from manual selection is enough for documenting the 

functionality of this toolkit, we recommend developing algorithms to automate and optimize the 

dimensioning and constraining processes and for obtaining a better layout for dimensioning 

geometry. 

7.  Acknowledgments 
This work is a result of the PACE partnership.  We are grateful for their input and providing our 

university with their software. 

28 Vijay K. Goyal, Ricky Valentín, Michael J. Cruz, Neit J. Nieves 
 

 



8. References 
[1]  Dones Pérez, P. M. (1991) Automatic Dimensioning in Constraint-based Geometry, Thesis 

(M.S.), University of Puerto Rico Mayagüez Campus. 

[2] Maarten, J. and Van, E., (1989). Creation and Modification of Parameterized Solid Models 
by Graphical Interaction, Computer & Graphics, 13(1), 71-76. 

[3] Light, R. and Gossard, D., (1982). Modification of Geometric Models through Variational 
Geometry, Computer Aided Design, 14(4), 209-214. 

[4] Suzuki, H., Ando, H. & Kimura, F., (1990). Geometric Constraints and Reasoning for 
Geometrical CAD Systems. , Computer & Graphics, 14(2), 211-224. 

[5] Pérez Jiménez, A. (1993) Finite Element Modeling and Optimization in a Constraint-based 
Environment, Thesis (M.S.), University of Puerto Rico Mayagüez Campus. 

 [6] Yuen, M. M., Tan, S. T. and Yu, K. M., (1988). Scheme for Automatic Dimensioning of 
CGS Defined Parts, Computer Aided Design, 20(3), 151-159. 

[7] Aldefield, B., (1988). Variation of Geometries Based on a Geometric-Reasoning Method, 
Computer Aided Design, 20(3), 117-126. 

[8] Pabón Irizarry, I. U. (1996) Artificial Intelligence in Automatic Dimensioning Layout, 
Thesis (M.S.), University of Puerto Rico Mayagüez Campus. 

[9] Jaramillo, H. (1993) Automatic Dimensioning and Tolerances, Thesis (M.S.), University of 
Puerto Rico Mayagüez Campus. 

[10] Serrano, D. (1987) Constraint Management in Conceptual Design, Thesis (Sc.D.), 
Massachusetts Institute of Technology. 

[11] Serrano, D. (1991) Automatic Dimensioning in Design for Manufacturing, ACM 
OB9791-427-9/91, pp. 379-386. 

[12] Ullman, L., Signer, A., (2006) C++ Programming, Berkeley: Peachpit Press. 

[13] Liberty, J., Horvath, D. B. (2005) C++, Indianapolis, Sam's Publishing. 

[14] UGS Corp. (2007) ‘Intermediate NX Design and Assemblies with Teamcenter Integration – 
Student Guide’, Publication Number: MT10056-TC-S – NX 5. 

[15] Tickoo, S., Kanthe, A. P. (2007). NX 5 for designers. New York: CADCIM Technologies. 
ISBN: 978-1-932709-40-7. 

[16] WEB: http://design.osu.edu/carlson/history/lesson10.html . Carlson, W (2003). A Critical 
History of Computer Graphics and Animation, Section 10: CAD/CAM/CADD/CAE. The 

*Corresponding author (V. Goyal), Tel.: 1-787-832-4040; E-mail: vijay.goyal@upr.edu.  
2014. American Transactions on Engineering & Applied Sciences. Volume 3 No.1  

ISSN 2229-1652  eISSN 2229-1660  Online Available at 
http://TuEngr.com/ATEAS/V03/0015.pdf . 

29 

 

 

mailto:vijay.goyal@upr.edu
http://tuengr.com/ATEAS/V03/0015.pdf


Ohio State University.  

[17] WEB: http://www.open-std.org/jtc1/sc22/wg21/. ISO/IEC JTC1/SC22/WG21 - The C++ 
Standards Committee (2008). 

 

Dr. V. Goyal is an associate professor committed to develop a strong sponsored research program for 
aerospace, automotive, biomechanical and naval structures by advancing modern computational 
methods and creating new ones, establishing state-of-the-art testing laboratories, and teaching 
courses for undergraduate and graduate programs. Dr. Goyal, US citizen and fully bilingual in both 
English and Spanish, has over 17 years of experience in advanced computational methods applied to 
structures. He has over 25 technical publications, main author of two books (Aircraft Structures for 
Engineers and Finite Element Analysis by Pearson Education Publishers), second author of 
Biomechanics of Artificial Organs and Prostheses (by Apple Academic Press), and has been recipient 
of several research grants from Lockheed Martin Co., ONR, and Pratt & Whitney. 

 

Dr. Ricky Valentin is an Associate Professor and the Interim Director of the Department of 
Mechanical Engineering at UPRM.  Dr. Valentin completed an engineering degree in 1996 in 
Mechanical Engineering at the University of Puerto Rico, Mayaguez, a Master of Engineering Science 
degree in 1997 (Wisconsin-Madison), and a Ph.D. from the University of Maryland at College Park in 
2003.  Dr. Valentin’s major research area is the innovative nano-manufacturing techniques to build 
templates for electronic packaging, alternative energy, environmental remediation, and biomedical 
applications. 

 

Michael J. Cruz is a Mechanical Engineering Undergraduate Student and Researcher at the 
University of Puerto Rico Mayaguez Campus.  He will complete his Bachelor’s Degree in the Science 
of Mechanical Engineering in the Fall Semester 2013.  He has interned with General Electric Aviation 
and General Motors.  He currently lives in Mayagüez, Puerto Rico. His research interests are PLM 
CAx enterprise strategy and composite materials.  He is currently pursuing a career in the energy 
industry.   

 

Neit J. Nieves-Flores, P.E. is a Senior level Engineer at Honeywell Aerospace working with 
Commercial and Military Aircraft Design and Manufacturing Projects.  He completed a Bachelor of 
Engineering degree in Mechanical Engineering in 2000 and a Master of Engineering in Mechanical 
Engineering in 2009, both at the University of Puerto Rico, Mayaguez.  He has worked in Design and 
Manufacturing in the Automotive Industry for Visteon Corporation and American Axle & 
Manufacturing, Inc.  His research interests include Internal Combustion Engine Flow, Combustion 
Performance and Heat Transfer as well as Composite and Ceramic Materials for application in Engine 
Design. 

Peer Review: This article has been internationally peer-reviewed and accepted for 

publication according to the guidelines given at the journal’s website. 

30 Vijay K. Goyal, Ricky Valentín, Michael J. Cruz, Neit J. Nieves 
 

 


	1. Introduction
	2. Background and Motivation
	2.1 Solid Modeling
	2.2 Parametric Modeling
	2.3 Constraint-Based Modeling
	2.4 Dimensioning

	3. Code
	4. Validation
	4.1 Example 1: Sketch of the Word "SECTION"
	4.2 Example 2: A machined component
	4.3 Example 3: Wankel-Type Rotor from an automotive engine
	4.4 Example 4: Piston and rod representation
	4.5 Example 5: Turbocharged and intercooled 4-cylinder internal combustion engine
	4.6 Example 6: Airfoil Calculator

	5. Discussion
	6. Final Remarks
	7.  Acknowledgments
	8. References

