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 To address the gap in bridging global and smaller 
modelling scales, downscaling approaches have been reported as 
an appropriate solution. Downscaling on its own is not wholly 
adequate in the quest to produce local phenomena, and in this 
paper we use a physical downscaling method combined with data 
assimilation strategies, to obtain physically consistent land surface 
condition prediction. 
 Using data assimilation strategies, it has been demonstrated 
that by minimizing a cost function, a solution utilizing imperfect 
models and observation data including observation errors is 
feasible. We demonstrate that by assimilating lower frequency 
passive microwave brightness temperature data using a validated 
theoretical radiative transfer model, we can obtain very good 
predictions that agree well with observed conditions. 
 

 2011 International Transaction Journal of Engineering, Management, & 
Applied Sciences & Technologies.   Some Rights Reserved. 

1. Introduction 
While General Circulation Models (GCMs) are best at simulating evolving and future 

changes in climate systems, they are unable to produce mesoscale and local atmospheric 
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phenomena (Wilks, 1999). Thus downscaling methods are necessary to bridge the gap between 

global scales and other smaller modelling scales. In this paper we use a high resolution 

mesoscale model and nest it within a GCM. This nesting is realized by using initial and 

boundary conditions from GCM output. This approach alone is not adequate for reproducing 

local phenomena and extreme events because nesting does not include accurate land surface 

initial and boundary conditions, missing important physical processes such as convection and 

local circulation (Boussetta, 2005). 

  

Many satellite based microwave imaging systems have been launched in space. Some of 

the recent ones include the Scanning Multichannel Microwave Radiometer (SMMR) launched 

in 1978 and Special Sensor Microwave Imager (SSM/I) launched in 1987. More recent sensors 

launched include Advanced Microwave Scanning Radiometer on board Earth Observing 

Satellite (AMSRE) and Tropical Rainfall Monitoring Mission (TRMM). These systems 

provide observations of variables that describe the earth’s atmosphere, ocean, cryosphere and 

land surface (Njoku, 1999). To aid in the interpretation of imagery from such sensors, 

microwave radiative transfer models have been developed, which are used to express 

propagation of microwaves in media, such as in Ulaby et al. (1981), Tsang et al. (1985), and 

Wilheit et al. (1999). 

 

Data assimilation employs models and observations exploiting the strengths of each. 

Models are approximations of physical processes, and these approximations introduce errors 

due to varying degrees of inaccuracy in representing these processes. On the other hand, 

observations while recording actual situations include random observations errors. In addition, 

due to costs incurred in obtaining these observations, they are more often than not inadequate, 

and are not uniformly distributed in time and space. Thus, models or observations on their own 

are not adequate in representing actual physical systems being studied or monitored. By 

applying data assimilation approaches, these limitations in model representation and in 

obtaining observations can be offset. 

 

Data assimilation techniques have evolved within meteorology and physical oceanography 

and in operational numerical weather prediction for atmospheric and oceanic flows (Ide et al., 

1997). These concepts have recently been applied to small scales, but this has largely been in 

attempts to improve estimation of soil moisture by assimilation of microwave TBs (Mahadevan 
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et al., 2003, 2007; Reichle et al., 2001). In mesoscale modelling, it is critical to provide reliable 

initial and boundary conditions. GCM forecast and analysis products can provide such data, but 

these have to be downscaled to the mesoscale before they can be used. By combining 

downscaling and data assimilation techniques, better initial conditions can be obtained, which 

can thereafter be used to run the mesoscale model, giving better forecasts. Sensitivity of L-X 

microwave bands to surface conditions has been exploited in the past in retrieving soil moisture 

conditions (Njoku, 1999). Since at these frequencies the atmosphere can be assumed 

transparent, clarification of surface emission heterogeneity through field experiment has a 

potential of supporting a retrieval scheme for land surface conditions. 

 

By exploiting data assimilation approaches and using a physically based surface emission 

model as observation operator, there is potential to obtain better land surface condition 

prediction by assimilating lower frequency microwave brightness temperatures. To physically 

address the mechanisms of land-atmosphere interactions based on land surface conditions, the 

Land Data Assimilation System developed by Boussetta (2005) is used to augment the 

stand-alone mesoscale model. While this system addresses land surface heterogeneities, it does 

not address atmospheric components in a direct way. This is not critical since this research is 

restricted to using lower frequency brightness temperatures in the data assimilation exercise. 

This system assimilates lower frequency (6.925 – 18.7 GHz) microwave TBs to improve 

estimation of land surface conditions. In this paper we build on the work done by Boussetta 

(2005), by including as observation operator an improved surface emission model that was 

validated by Kuria et al. (2007). 

 

Data assimilation is a method of estimating a set of parameters by optimizing the fit 

between the solution and a set of observations which the model is meant to predict (Bannister, 

2001). In this context, the procedure of adjusting the model parameters until the model ‘best 

predicts’ the observables is referred to as optimization. The observations used for data 

assimilation can be very heterogeneous with respect to their temporal and spatial resolution, 

and their type. The results of an assimilation scheme are a continuous data set, which represents 

the best estimate for the state of the system. This is done by optimizing the state vector of the 

system using available observations and dynamic constraint of the numerical model, specified 

by the governing dynamical equations. 
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In variational data assimilation not only is a a close fit to one observation (the last one) 

required but additionally, consistency with a dynamic model over a defined period of time 

(Daley, 1991). This means that in variational data assimilation, one tries to adjust the model 

globally to fit all observations during the assimilation period. 

A discrete model for the evolution of an atmospheric, coupled system from time ti to time ti+1 is 

governed by the equation 

 

௜ାଵሻݐ௙ሺݔ ൌ  ௜ሻሿ                                    (1)ݐ௙ሺݔሾۻ

 

where x and M are the model’s state vector and its corresponding dynamics (model) operator, 

respectively. The state vector x has dimension n. M represents the model simulation or 

prediction, and may differ from equation (1) if the model is nonlinear and/or deterministic. The 

state vector x describes the state variables. 

Observations y0 at time ti are defined by 

 

௜ݕ
଴ ൌ ۶௜ሾݔ௙ሺݐ௜ሻሿ ൅  ௜                                  (2)ߝ

 

where H is an observation operator, and ε is noise or observation errors. The observation vector 

௜ݕ
଴ ؠ ௜ݕ

଴ሺݐ௜ሻ has dimension pi. A major problem of data assimilation is that, typically,  ݌௜ ا ݊. 

The observation operator H, can be nonlinear, like M, and both can contain explicit time 

dependence - denoted by subscript i - in addition to the implicit dependence via the state vector 

௜ݔ
௙ ؠ ௜ݔ

௙ሺݐ௜ሻ. The error ε is assumed to have a normal distribution with mean 0. Its covariance 

matrix is denoted by R, consisting of instrumental and observation errors. 

 

In variational data assimilation one tries to adjust the model’s initial parameters x0, 

globally to all observations available during the assimilation period. Therefore it is necessary to 

introduce a scalar quantity J, which represents the difference between the model and observed 

states. The objective function is a function of the state vector x. J is the sum of the background 

error JB, which gives the difference between the model state and the background xb and an 

observation error J0, which gives the difference between the model state and observations The 

complete cost function can be written as; 
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۸ ൌ ۸஻ ൅ ۸଴                                         (3) 

 

The common form of JB is expressed as 

 

۸஻ሺݔ଴ሻ ൌ ଵ
ଶ

ሺݔ଴ െ ଴ݔ
௕ሻ்۰ିଵሺݔ଴ െ ଴ݔ

௕ሻ                            (4) 

 

where, x0 is the analysis variable, or state vector, ݔ଴
௕ is the background field, and B is the 

background error covariance matrix. 

The common form of J0 is given as 

 

۸଴ሺݔ଴ሻ ൌ
1
2 ෍ ቀሺ۶௜ሾݔ௜ሿ െ ௜ݕ

଴ሻ்܀௜
ିଵሺ۶௜ሾݔ௜ሿ െ ௜ݕ

଴ሻቁ
ே

௜ୀଵ

 

 

௜ݔ ൌ ,௜ݐሺۻ  ଴ሻ                                       (5)ݔ଴ሻሺݐ

 

where, y0 represents all of the satellite observations, H is the observation operator, M is the 

model operator, and R is the observational error covariance matrix. In this paper, y0 represents 

remotely sensed microwave brightness temperatures, and H is a radiative transfer model, which 

computes corresponding brightness temperatures. N is the length of an assimilation window. 

Thus, relatively accurate observations are used directly to correct model-estimated values, and 

these corrections are fed back in the solution process. 
 

The total cost function can be rewritten in as follows: 

 

۸ሺݔ଴ሻ ൌ
1
2 ෍ ቀሺ۶௜ሾݔ௜ሿ െ ௜ݕ

଴ሻ்܀௜
ିଵሺ۶௜ሾݔ௜ሿ െ ௜ݕ

଴ሻቁ
ே

௜ୀଵ

 

 

൅ ଵ
ଶ

ሺݔ଴ െ ଴ݔ
௕ሻ்۰ିଵሺݔ଴ െ ଴ݔ

௕ሻ                          (6) 

 

Various assumptions have been made when formulating the above cost function. The first 

assumption is that the models are ‘perfect’ over the assimilation period, which leads to the 
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so-called strong-constraint formalism. An alternative cost function could be written with a third 

term, as an additional constraint to penalize model errors. This would be an example of a weak 

constraint formalism (Mahadevan et al., 2007). Due to its compactness, we adopt this 

strong-constraint approach in this paper. 

2. Meso scale model run 
Figure 1 shows the Tibet Coordinated Enhance Observing Period (CEOP) site. The Tibetan 

plateau is located in Asia with an area of approximately 3000 × 1000 km2 and a mean elevation 

of more than 4 km above mean sea level. 

(a) (b) 

Figure 1: CEOP Tibet Site: (a) Satellite imagery, with red pegs marking the extents 

corresponding to AMSR-E image. Marked with small yellow pegs are 4 in-situ stations. This 

image was obtained from Google Earth. (b) Terrain map generated by ARPS. 

 

It is bounded by the highest mountains in the world (Himalayas, Kunlun shan, Pamir). It is 

considered an important component of the global water and energy cycle as it exerts 

appreciable thermal and dynamic influences on the local and regional meteorology as well as on 

the Northern Hemisphere atmospheric circulations (Yang et al., 2009). 
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Table 1: Model domain specifications. 

Variable Description Setting 

Δx East West spacing 5560 m (0.05°) 

Δy North South spacing 5643 m (0.05°) 

λm Central longitude 91.9°E 

φm Central latitude 32.0°N 

nx East West grids 70 

ny North South grids 70 

nz Vertical levels 41 

 

While there are other mesoscale models such as the Weather Research and Forecasting 

(WRF) model and the Fifth-Generation Penn State Mesoscale Model (MM5), the Advanced 

Regional Prediction System (ARPS) developed at the Center for Analysis and Prediction of 

Storms (CAPS) (Xue et al., 2003) as the mesoscale model for simulating surface and 

atmospheric evolution of Tibetan Plateau conditions. ARPS was used since a coupling of this 

model had been done with Simple Biosphere Model (SiB2) and had demonstrated good results 

in simulating land surface conditions (Boussetta, 2005). Table 1 defines the domain settings of 

Tibet area used in the simulation and validation exercise. This area is about 390 × 390 km2 

providing ample overlap over an AMSR-E brightness image covering an area of about 280 × 

280 km2 with central position defined as (32°N, 91.9°E). The z- dimension is staggered with 

higher resolution provided near surface (30 m) and smoothly transitioning to lower resolution at 

higher elevations (1.2 km). This is to significantly improve simulation of near surface features 

which vary rapidly over time. The simulation were undertaken to simulate three days evolution 

of land and atmosphere condition. This period was from 19th August 2004 00:00 UTC – 22nd 

August 2004 00:00 UTC. The integration time steps were as follows: (i) evolution of surface 

condition (120 seconds) (ii) small time step (1 second) and (iii) big time step (6 seconds). 

2.1 Initial and Boundary conditions 
For this paper, we used National Centers for Environmental Prediction (NCEP) Global 

Forecast System (GFS) reanalysis data to provide initial and boundary conditions for running 

the Mesoscale model. The GFS is a global spectral data assimilation and forecast system. GFS 

forecasts are produced every 6 hour. The output product has a horizontal resolution of 1° and 
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vertically it has 64 layers with model top layer at 0.2 hPa. 

 

We used the EXT2ARPS package to generate the required lateral boundary forcing, 

linearly interpolated in time to the domain of our model run. This GFS generated boundary 

conditions were updated every 6 hours. The package ARPSTRN generated terrain data from 

30”× 30” global topographic dataset provided by Center for Analysis and Prediction of Storms 

(CAPS) University of Oklahoma. Temporal invariant surface condition was interpolated from 

30” soil maps, land use maps and 10’ Normalized Difference Vegetation Index (NDVI) data 

using ARPSSFC package. 

 

2.2 Model parameters used 
To sufficiently simulate smaller scale atmospheric features related to land surface effect, 

our domain horizontal resolution was set to 0.05° × 0.05° while for the vertical grid ARPS uses 

a hyperbolic tangent function to stretch the grid interval in this case from 30 m at the surface to 

nearly 1.2 km at the top (18 km). 

The physics parameterization options include a 1.5-order Turbulent Kinetic Energy-based 

subgrid scale closure scheme turbulence, and a planetary boundary layer parameterization. 

Radiative forcing is computed according to an atmospheric radiation transfer parameterization 

and is updated each 10 minutes. 

 

The Simplified Biosphere (SiB) model, developed by Sellers et al. (1986) and 

subsequently revised to SiB2 in Sellers et al. (1996), is used as surface scheme, and the Lin Ice 

Microphysics parameterization (Lin et al., 1983) to parameterize cloud and precipitation. For 

explicitly resolving convection, the modified Kain-Fritsch convective scheme is better suited 

for resolving convection (Truong et al, 2009), the original Kain-Fritsch convective 

parameterization (Kain and Fritsch, 1993) was adopted, since LDAS is mainly sensitive to land 

surface conditions. The model domain topography is derived from 1 km resolution global 

dataset. 
 
Land cover was obtained from the global dataset based on the global ecosystem 

classification with a spatial resolution of 30” × 30” while its associated static parameters were 

derived according to Sellers et al. (1996). Soil types were obtained from global dataset with a 

resolution of 30” × 30” and vegetation types were obtained from a 100 resolution global 
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dataset. All these datasets were obtained from CAPS 

3. Land Data Assimilation Scheme 
Boussetta (2005) validated Land Data Assimilation Scheme (LDAS) by assimilating 

satellite data and assessed its dynamic downscaling ability. He applied it in a three dimensional 

configuration on a mesoscale area of the Tibetan plateau. In his case, he used GEWEX Asian 

Monsoon Experiment (GAME) Tibet dataset for 1998. This system combines a land data 

assimilation scheme with a coupled land-atmosphere mesoscale model in a recursive cycle. The 

system runs by first introducing the initial and boundary atmospheric conditions from NCEP 

GFS into the coupled land-atmosphere mesoscale model (ARPSSiB2).  This coupled model 

then produces forcing for one assimilation window to the land data assimilation system which 

optimizes the initial surface variables and feeds them back to the coupled land-atmosphere 

model (Figure 2). 

 
Figure 2: Land Data Assimilation Scheme. 

 
Figure 3 shows LDAS assimilation cycle. A typical LDAS assimilation cycle comprises of 

the following steps. 

Step 1 : ARPS-SiB2 is run for an assimilation window time T to obtain an initial guess and 

forcing parameters for LDAS. 

Step 2 : LDAS runs for one assimilation window, which feeds back new initial surface 

condition for ARPS-SiB2 at time t = t − T. 
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Figure 3: LDAS Assimilation Cycle. 

 

Step 3 : ARPS-SiB2 runs for two assimilation window time 2T, the first window output 

being considered as optimal, while the second one serves as forcing for the LDAS run. 

 

In this paper, we used a 24 hour assimilation window (T = 24h). This was due to the need to 

have at least one satellite observation to be assimilated during the assimilation period. 

 

3.1 Model operator 
SiB2 is used as the model operator in the assimilation scheme. It is a dual source model 

with fluxes originating from soil surface and canopy. It incorporates simple representations of 

vertical soil moisture transport, plant controlled transpiration, interception, evaporation, 

infiltration, sensible and heat fluxes through physically based mechanisms. 

 

SiB2 includes three soil layers; a surface soil layer of a few centimeters which acts as a 

significant source of direct evaporation when moist; a root zone which is the supplier of soil 

moisture to the roots and accounts for transpiration; and a deep soil layer acting as a source for 

hydrological base flow and upward recharge to the root zone. 

 

3.2 Observation operator 
Boussetta (2005) assimilated TRMM Microwave Imager (TMI) satellite brightness 

temperature (TB) observations at 10.7 and 19.4 GHz, both polarizations. In this paper, we used 

AMSR-E TB observations at 10.7 and 18.7 GHz both polarizations. Additionally, assimilation 

of two surrogate observations, namely Polarization Index (PI) proposed by Paloscia and 

Pampaloni (1988) at 6.9 GHz, and Index of Soil Wetness (ISW) developed by Fujii and Koike 
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(2001), derived using 18.7 and 6.9 GHz horizontal polarization. These three frequencies’ data 

were chosen due to their relative insensitivity to atmospheric conditions. These two 

relationships are given as, 

଺ܫܲ ൌ ்஻లೡି்஻ల೓
భ
మሺ்஻లೡା்஻ల೓ሻ

                                    (7) 

 

ܹܵܫ ൌ ்஻భఴ೓ି்஻ల೓
భ
మሺ்஻భఴ೓ା்஻ల೓ሻ

                                   (8) 

 

where v or h in the subscript denote polarization i.e vertical and horizontal respectively at the 

given frequency. 

 

Boussetta (2005) used a first order radiative transfer model (RTM) coupled with QH model 

of Choudhury et al. (1979) for addressing surface roughness effects. In Kuria et al. (2007) it was 

shown that the QH model is not fit for use with high frequency data. Although it has been 

widely used, its roughness parameters have to be ‘calibrated’ first, and are thus not physically 

based. While this is sufficient in most cases when dealing with frequencies lower than 20 GHz, 

the lack of a physical basis in determining these parameters motivated us to consider using the 

improved surface emission model validated by Kuria et al. (2007). This surface emission model 

is used as the observation operator. Compared to that used in Boussetta (2005), it uses a 

physically based treatment of surface roughness effects, thereby improving confidence of 

forward modelling. A further refinement was by introducing Polarization Index (PI) and Index 

of Soil Wetness (ISW) that describe roughness and moisture conditions as surrogate 

observations. We use the variance matrix of the following form to describe the background 

co-variance matrix B, used in equation 4. 

 

۰ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ߪۍ ೒்

ଶ 0 0 0 0
0 ೏்ߪ

ଶ 0 0 0
0 0 ெ௩ೞ೑೎ߪ

ଶ 0 0
0 0 0 ெ௩ೝ೟ߪ

ଶ 0
0 0 0 0 ெ௩೏೛ߪ

ଶ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                             (9) 

 

The observation error covariance matrix (R), used in equation 5, follows a similar form 
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܀ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
௕భబ೓்ߪۍ

ଶ 0 0 0 0 0
0 ௕భబೡ்ߪ

ଶ 0 0 0 0
0 0 ௕భఴ೓்ߪ

ଶ 0 0 0
0 0 0 ௕భఴೡ்ߪ

ଶ 0 0
0 0 0 0 ௉ூలߪ

ଶ 0
0 0 0 0 0 ூௌௐలభఴߪ

ଶ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

                    (10)               

 

In these cases we assume that all observations are uncorrelated, and model state variables 

are uncorrelated too. In Table 2, we list values of observation errors, and in Table 3, values of 

background errors used in the observation and background error matrices, respectively as used 

in this research. The background covariance matrix was assumed static for simplicity, though 

ideally it should be allowed to evolve with the assimilation process, being updated with new 

values for use in subsequent steps.  

 

Table 2: Observation errors 

Tb10h Tb10v Tb18h Tb18v PI6 ISW618 

4K 3K 5K 4K 0.01 0.01 

 
 

Simulated Annealing was used to minimize the cost function J. It is a heuristic 

optimization approach capable of minimizing the variational cost function without using 

adjoint models (Ingber, 1993). It avoids problems due to strong non-linearities and 

discontinuities in finding the global minimum in the hilly structure of the cost function. It is 

based on the analogous approach of metal annealing in thermodynamics (Kirkpatrick et al., 

1983). 

Table 3: Background errors 

Tg Td Mvsfc Mvrt Mvdp 

3K 2K 0.04 0.03 0.02 

4. Results and discussion 
We use ARPS/LDAS to simulate land surface conditions using AMSR-E lower frequency 

(6.925, 10.65, and 18.7 GHz) brightness temperatures (TBs) for Tibetan plateau. This 
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simulation was for three days from 00:00 UTC on 19th August 2004 – 00:00 UTC on 22nd 

August 2004. 

 
(a) 

 
(b) 

Figure 4: Comparison of time-series land surface variables (a) surface temperature and (b) 

surface soil moisture at BJ site 

4.1 Time series comparison 
We run ARPS/LDAS assimilation as one case, and plain ARPS as second case. Both 

models were run for 72 hours from 00:00 UTC 19/08/2004 to 00:00 UTC 22/08/2004. In Figure 

4 we show comparisons of retrieved surface variables at BJ site.  
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(a) 

 
(b) 

Figure 5: Time series soil moisture product comparison along 91.9°E (a) ARPS case and 

(b) LDAS case 

 

We prepared a time series plot covering the duration 0 – 48h, and we compare this with an 

in-situ dataset. This in-situ data set comprises hourly soil moisture records at 3cm and 10cm 

depth, and soil temperature at the same depths. Since we are using Microwave observations 

which sense shallow depths, we will analyze only near surface variables (3cm depth). During 
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this time period, we have two AMSR-E overpasses, descending overpass at 19:41 UTC on 19th 

August and ascending overpass 06:42 UTC on 20th August. 

 
(a) 

 
(b) 

Figure 6: Time series surface precipitation comparison along 91.9°E (a) ARPS case and (b) 

LDAS case 
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We begin by considering surface temperature (Figure 4(a)).While bearing in mind the fact 

that we are comparing grid averaged values with point observations, we note that (i) the diurnal 

variation of near surface temperature observed is simulated by both cases, (ii) ARPS derived 

surface temperature have much higher peaks and valleys than ARPS/LDAS case and (iii) in 

general, the ARPS/LDAS configuration gives better agreement with the in-situ dataset, though 

the gap between peaks/valley can vary by as much as 5 K. 

 

Considering near surface soil moisture (Figure 4(b)), there is remarkable agreement with 

in-situ dataset for ARPS/LDAS case. ARPS case is over-predicting soil moisture by as much as 

5%. At the time slots corresponding to AMSR-E overpass times it can be noted that 

ARPS/LDAS and in-situ datasets match perfectly, and also that in the interval between these 

times, the simulations follows observations almost perfectly. 

In Figure 5 we show comparison of time series moisture product along longitude 91°E.We take 

the same period (0 – 48h) for this analysis. It is clear that the ARPS case (Figure 5(a)) is wetter 

than the corresponding ARPS/LDAS case. We note that ARPS case is wettest at the edges, 

alluding to the strong influence of initial and boundary conditions from GFS reanalysis data. 

The situation is different in ARPS/LDAS case. ARPS seems to get wetter implying heavy 

precipitation events at the beginning (6 hours after start) and about 30 hours after start. We have 

similar events in ARPS/LDAS but their duration and intensity is not as high as in ARPS case. 

Figure 6 depicts time series precipitation for the same period. As mentioned above, it can be 

seen that ARPS is producing higher precipitation, in intensity and distribution. We note too that 

ARPS precipitating durations are longer than ARPS/LDAS precipitation durations. 

4.2 Comparison of simulation at hour closest AMSR­E overpass time 
We consider 07:00 UTC on August 20th 2004 for analysis of soil moisture retrieval. Figure 

7 shows simulation following the same convention, i.e. ARPS case (Figure 7(a)) and 

ARPS/LDAS case (Figure 7(b)). Soil moisture distribution in ARPS case is strongly influenced 

by the initial conditions giving rather high forecasts of soil moisture.  

 

Its soil moisture distribution follows GFS soil moisture distribution (not shown).  Soil 

moisture distribution in ARPS/LDAS case by assimilating observed TBs shows improved 

distribution. 
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(a) 

 
(b) 

Figure 7: Moisture comparison (a) ARPS and (b) LDAS for August 20th 2004. 

 
Figure 8: GPCP Cumulative surface precipitation 

 

To validate this hypothesis, we consider the relationship between precipitation and soil 

moisture. It is known that the occurrence of a precipitation event invariably leads to an increase 

in soil moisture, thus in the absence of quantitative soil moisture observations or estimates, 
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observed precipitation (or precipitation deduced from observations) can be used to give a 

qualitative assessment of soil moisture. 

 

We include Global Precipitation Climatology Project (GPCP) daily cumulative 

precipitation data for the site on August 20th, to assist in verifying our hypothesis that 

ARPS/LDAS case is significantly better than ARPS case. GPCP provides daily global gridded 

values of cumulative precipitation, for the period from October 1996 – December 2006 

(Huffman et al., 2001). The product considered for this validation exercise is the 1° resolution 

daily precipitation dataset. Figure 8 shows this GPCP dataset for the spatial domain considered 

in this paper. Comparing this with our simulations, it can be noted that while the resolution of 

GPCP is very coarse, we have similar pattern with the ARPS/LDAS case. The ARPS case is 

completely different with the observed precipitation pattern. 

 

Considering surface temperature simulations (Figure 9), surface temperature 

representation in both cases follows similar patterns, but on closer inspection, it can be noted 

that ARPS simulated generally higher temperatures than ARPS/LDAS case.  

(a) (b) 

Figure 9: Surface temperature comparison (a) ARPS and (b) LDAS for August 20th 2004 

 

Additionally, when we compare ARPS/LDAS case with terrain map (Figure 1), we note 

that the temperature distribution shows agreement with terrain map (high temperature 
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corresponding to valley area, and low temperatures corresponding to mountain areas). 
 

We also note that in the central region of ARPS/LDAS case we have colder temperatures. 

This region corresponds could be experiencing a precipitation event at this time (bearing in 

mind the time series results shown in Figure 6). It can thus be argued that ARPS/LDAS 

simulated surface temperatures, while not matching observed conditions perfectly (see Figure 

4(a)), does provide a much improved estimation of surface temperatures. 

5. Conclusion 
Data Assimilation potential in improving model predictability has been investigated in this 

paper. We have shown that by using a physically based surface emission model as the 

observation operator we have improved estimation of near surface conditions. Near surface soil 

moisture retrievals using ARPS/LDAS was shown to follow observed situation well. Surface 

temperature retrieval was shown to be better when we use the assimilation system than if we did 

not. While the match between observations and assimilated simulations is not perfect, there is 

nevertheless a good agreement with the discrepancies being attributed to the fact that the in-situ 

measurements were made at point locations while the assimilated TBs were obtained over areal 

extents representing the satellite footprint resampled to a 10km spatial resolution. 
 

From the results presented, we showed that in general, soil moisture estimation without 

assimilation is higher than the corresponding assimilation case. This can be in part due to the 

uncertainties in modelling microphysics and convection in the adopted mesoscale model. We 

have demonstrated that by using LDAS, satellite TB observations can be used to improve soil 

moisture and surface temperature estimations. While both cases depend on initial conditions, 

poor initial conditions were demonstrated as severely impacting the non assimilation case as the 

assimilation case is able to recover by assimilating passive microwave TBs. This means that if 

uncertainties in mesoscale modelling are resolved, then assimilation of lower frequency 

microwave TBs will yield much more reliable soil moisture estimates. 

 

It has been demonstrated that by improving the land surface conditions, the surface 

precipitation rates also improve which if therefore used to feed the atmosphere component of a 

mesoscale model will in turn yield improved estimation of the atmosphere conditions. In such a 
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scheme, the modified Kain-Fritsch convection scheme can address convection while a 

microphysics scheme such as the Schultz scheme (Schultz, 1995) addressing the five main 

hydrometeor categories can be used. 
 

Other satellite platforms operating at microwave frequencies such as the Tropical Rainfall 

Monitoring Mission and the future Global Precipitation Mission, together with AMSR-E can 

provide periodic passive microwave data (brightness temperatures) which can be used in the 

LDAS presents, to improve estimation and forecasting the evolution of surface conditions (soil 

moisture, surface temperature among others).  
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