
*Corresponding author (H. Hakimzadeh). Tel/Fax: +1-574 520 4517. E-mail addresses:
hhakimza@iusb.edu. 2011. International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies. Volume 2 No.5. (Special Issue)
ISSN 2228-9860. eISSN 1906-9642. Online Available at http://TuEngr.com/V02/493-506.pdf

493

International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies

http://www.TuEngr.com, http://go.to/Research

CS0: A Project Based, Active Learning Course

Hossein Hakimzadeh a*, Raman Adaikkalavan a, and James Wolfer a

a Computer Science and Informatics, Indiana University South Bend, USA

A R T I C L E I N F O

A B S T R A C T

Article history:
Accepted 26 August 2011
Available online
01 November 2011
Keywords:
Active Learning;
CS0;
Nifty Projects;
Active Learning Classroom;
Retention.

 The recruitment and retention of students in early computer
programming classes has been the focus of many Computer
Science and Informatics programs. This paper describes an
initiative underway at Indiana University South Bend to improve
the retention rate in computer science and informatics. The
approach described in this work is inspired by the SCALE-UP
project, and describes the design and implementation of an
instructor-guided, active learning environment which allows
students to gradually acquire the necessary critical thinking,
problem solving, and programming skills required for success in
computer science and informatics.

 2011 International Transaction Journal of Engineering, Management, &
Applied Sciences & Technologies. Some Rights Reserved.

1 Introduction

At Indiana University South Bend (IUSB), the university admission policy allows a

significant number of at-risk students to enter college and be given a second chance (IU South

Bend Admission Rates, 2011). As a result, the overall success rate in lower level courses such

as CS1 and CS2 can be as low as 50%, giving ample incentive to develop and implement

initiatives that improve retention among computer science and informatics students. The lack of

K-12 computer science preparation, inadequate mathematical preparation, poor critical

thinking skills, and the lack of awareness of the global competition for high technology jobs

 2011 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. 2011 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies.

494 Hossein Hakimzadeh, Raman Adaikkalavan, and James Wolfer

only add to the reasons why students struggle in beginning science classes. One can hope that

recent national initiatives such as STEM (STEM, 2007) which funds research and innovation in

educational methods, and “Race to the Top” (Race to the Top, 2009) programs which reward

schools that design and implement rigorous academic standards and high-quality assessments

will continue to address some of these issues in the future.

In the meantime, to attract and retain students, the computer science education community

has developed and experimented with a number of innovative approaches for teaching

introductory computer science courses. These approaches include thematic courses such as

those using games (Barnes, et al. 2007), computer security (Taylor, et al. 2008), simulation

(Stone, 2006), computer graphics (Matzko, et al. 2006 and Batzinger, et al. 2011), and robotics

(Pamela, et al. 2003 and Imberman, et al. 2005). Others (D'Souza, et al. 2008) have obtained

good results by introducing supplemental instruction and student mentors in early computer

programming courses. Finally, a number of initiatives have used active learning approaches

which promote working in small groups on hands-on activity (McConnell, 2006 and

Whittington, et al. 2008).

At IU South Bend, our response to student retention has been to design and develop a new

CS0 course (“CSCI B100 - Problem Solving Using Computers”). This course provides students

interested in Computer Science or Informatics the opportunity to explore the required skills

needed for the discipline in a controlled “incubator” like setting. The new course incorporates

ideas from thematic courses as well as active learning to introduce the students to structured

problem solving, working within small groups, research, data collection, reflective thinking,

stepwise refinement, dialogue and discussion. Additionally, the students are exposed to

introductory programming concepts such as variables and memory manipulation, conditionals,

loops, modularization and code reuse, arrays, and objects.

2 Course Design

The new CS0 course is divided into two phases. During the first phase (approximately the

first 8 weeks of the semester), students are actively engaged in a series of problem solving

exercises. Each exercise will require approximately 3 to 4 class sessions. During these sessions,

students (in small groups) work jointly with their instructor and lab assistant to analyze and

*Corresponding author (H. Hakimzadeh). Tel/Fax: +1-574 520 4517. E-mail addresses:
hhakimza@iusb.edu. 2011. International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies. Volume 2 No.5. (Special Issue)
ISSN 2228-9860. eISSN 1906-9642. Online Available at http://TuEngr.com/V02/493-506.pdf

495

solve an assigned problem. The exercises also require group work outside of class (data

collection, meetings, etc.) The goal of these supervised exercises is to provide a hands-on

demonstration of how an experienced practitioner approaches a problem, how alternative

solutions are considered and developed, and how each solution is evaluated in order to select

the best solution. The solution is then implemented, revealing the process of identifying and

correcting errors in design and implementation and illustrating how the solution is

incrementally refined until the problem is solved. This process of problem specification,

analysis, design, implementation, refinement, and documentation is repeated with four

problems from different domains, helping the students recognize the natural patterns which

exist in solving many problems.

During the second phase of the course, assignments become more traditional and the

instructor limits his or her contribution to the solution. The instructor serves as a coach and

helps the student groups focus their thinking and activities. Assignments during the second

phase are small extensions of the assignments given in the first phase; however, each

assignment will provide an opportunity for deeper understanding of programming concepts.

The current set of projects were designed, developed and implemented by the authors to

complement the background of the student body entering this course. Additional projects, based

on “nifty assignments” (McGuire, et al. 2008; Franke, 2008; Reed, 2002; and Shiflet, 2007),

have been implemented but are yet to be tested in the classroom. Currently, the course includes

five contact hours per week, three hours of active-learning sessions including short lectures and

group activities, and two hours of hands-on laboratory. Five sections of this course were taught

during fall 2009, spring 2010, and fall 2010 semesters. We expect the students taking this

course to have basic algebra skills. Students were asked to form teams of two or three, and

assignments and labs were assigned to groups. To receive full credit, each student was

responsible for submitting the entire assignment and/or lab. Also, after each assignment, group

members were required to submit a “Self and Peer” evaluation form. The course did not require

a text book, but lecture notes as well as video lectures were made available to the students via

the class web site and the IU course management system. Additional information including

assignments, labs, lecture notes, videos, etc., is available on the course web site at

www.cs.iusb.edu/~A290.

496 Hossein Hakimzadeh, Raman Adaikkalavan, and James Wolfer

2.1 Assignments
An important aspect of developing this course was the construction of appropriate problem

solving and programming exercises. Our goal was to develop exercises that rely on basic

mathematical skills, are relevant to student life and experiences, draw from diverse and

interesting problem domains (attracting students with different background to the discipline),

be limited in their scope so that it can be defined, analyzed, designed, and implemented in

approximately five hours of lecture and laboratory, can be easily understood by beginning

students, foster social interaction and team work, and can train students in understanding

problem solving patterns and using programming concepts and elementary data structures. At

the same time the exercises should be extendible, so that a more complex version can be

assigned during the second phase of the course.

Depending on the faculty offering the course, a total of three or four major assignments

were given to the students. Each assignment consisted of 3 distinct parts with their own due

dates. The initial two parts were used in the first phase of the course and the third part was used

in the second phase. Below, we will describe one assignment in depth and the other three

briefly.

2.1.1 Assignment 1: Virtual Tour
In this assignment, students engage in the production, design and development of an

application that can load and play videos. This exercise requires the use of conditionals, and

Graphical User Interface (GUI) controls such as combo-boxes, text-boxes, buttons, and video

player. It is meant to be simple, since it is assigned during the first class period, and student

groups can begin working on the analysis and design component of the program immediately.

Despite its simplicity, the problem is presented as a plausible real world application and

students find it enjoyable to work with. We first discuss the variations to this basic program:

• Virtual Campus Tour: In this exercise (Figure 1) potential questions about the

university campus are compiled, and videos answering each question is shot and

edited. The program is then developed to provide a virtual campus tour by allowing

the user to select a question and watch the corresponding video.

• Virtual Public Place Tour: Similar to the above, but this tour requires students to

visit a public place and perform the same activities.

• Faculty Profile System: Textual and video information about faculty are compiled.

*Corresponding author (H. Hakimzadeh). Tel/Fax: +1-574 520 4517. E-mail addresses:
hhakimza@iusb.edu. 2011. International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies. Volume 2 No.5. (Special Issue)
ISSN 2228-9860. eISSN 1906-9642. Online Available at http://TuEngr.com/V02/493-506.pdf

497

The user is then able to select a faculty and view his or her profile, learning about

their teaching and research interests.

• Virtual Product Tour: Information about one or more products (e.g., computer

hardware, software, car, flat screen TV, cell phone, etc.) are compiled and

presented.

• Degree Profile System: Textual and video information about degree programs

available at the university are compiled. The user is then able to select a degree

program and view relevant information and interviews about that discipline.

Figure 1: Virtual Tour

Below we discuss the three phases of the “Virtual Public Place Tour”. In the first phase,

students were asked to research about virtual tours offered by businesses, select a public place,

and create a set of questions to be answered about that place. After submission, the instructor

typically discusses all the student submissions in the class. Based on the discussions, questions

by the groups are refined. In the second phase, students create short edited videos answering

those questions and also create a GUI design for their tour. Sometimes their GUI design is very

complex and students will refine their design post submission. In the third phase, students are

asked to implement their design using Visual Basic. Students are asked to load the information

(questions, video file location, etc.) needed for the program from a CSV or XML file.

Programming principles explored in all the three phases include: Variables, operators,

conditionals, duplicate elimination, file handling, documentation, and GUI design and controls.

498 Hossein Hakimzadeh, Raman Adaikkalavan, and James Wolfer

2.1.2 Assignment 2: Geo­Tagging
This next assignment is slightly more complex. The basic idea is to identify items of

interest, classify them, tag their latitude and longitude, take pictures or videos of the items, and

possibly collect other data about each item. Then the program is designed to allow the user to

navigate through the data set, and display the data on a map using Google or Yahoo map via a

web service. A later extension to the assignment will allow the user to view the items by

category, count the items in the category, etc. Variations to this assignment can include:

Figure 2: Geo-Tagging

• Geo-Tagging the local St. Joseph River: which allows the user to select a segment of

the St. Joseph River (a river near the university), then virtually navigate the banks of

the river, viewing items of interest (

• Figure 2). Clicking the icon for each item will reveal some additional information

about the item.

• Geo-Tagging for Realtors: which allows the user to select a location on the map and

click on the houses that are for-sale. Clicking the icon for the house will reveal basic

information about the house such as it street address, price, image, etc. (perhaps

some other data typically found on a Realtor Multiple Listing Service (MLS) sheet)

• Fast-Food Finder: which allows the users to virtually navigate the neighborhood

around the campus and identify the nearby fast-food restaurants. Clicking the icon

for the restaurant will reveal some basic information about the business such as it

street address, type of food or beverage sold, student related specials or discounts.

Programming principles explored: Conditional, loops, array, functions, procedures, file

*Corresponding author (H. Hakimzadeh). Tel/Fax: +1-574 520 4517. E-mail addresses:
hhakimza@iusb.edu. 2011. International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies. Volume 2 No.5. (Special Issue)
ISSN 2228-9860. eISSN 1906-9642. Online Available at http://TuEngr.com/V02/493-506.pdf

499

I/O, classes, documentation, and GUI design.

2.1.3 Assignment 3: Game (Video Poker)
This assignment is quite popular with students and creates a fully functioning Video Poker

game (Error! Reference source not found.). It allows the player to draw from a deck of cards,

keep the cards they want and draw up to four new cards. After which the program has to

evaluate if the player has a winning hand and calculate the payout. Variations to this assignment

can include:

• Black-Jack: in which one is playing against the dealer.

• Matching / Concentration game, where the player tries to match a pair of cards. The

board can be 4x4, or 6x6 (even number of cards), all the cards are taken from the

same deck of cards. The game is timed to allow the player to evaluate his or her

performance.

Programming principles explored: Conditional, loops, array, functions, procedures,

random numbers, file I/O, classes, documentation, and GUI design.

Figure 3: Video Poker.

2.1.4 Assignment 4: Medical Informatics
This assignment requires considerable up-front research and team activity. The goal of this

assignment is to familiarize students with the data collection, measurement, and analysis,

needed in many areas of research. Students are asked to first develop health survey, then are

asked to conduct an anonymous survey of (18 to 25 year old college students), measuring their

height, weight and blood pressure. The collected information is then brought into the program

500 Hossein Hakimzadeh, Raman Adaikkalavan, and James Wolfer

and analyzed, then displayed in a variety of different forms. The user can select a specific

subject and see their individual data points, they can see the average for each category, and

finally they can see the data graphically using a line or bar chart (Figure 4). Variations to this

assignment can include:

• An interactive version of the software which allows individuals to walk up to a

kiosk, enter their own information and see how they compare to others in the

population.

In this assignment we intentionally stayed away from recommending behavioral changes,

or providing medical (or even common sense) advice to survey subjects. Instead, in

consultation with the school of nursing each student was provided with an information sheet,

pointing them to appropriate medical resources.

Programming principles explored: Conditional, loops, array, functions, procedures, file

I/O, classes, documentation, and GUI design.

Figure 4: Medical Informatics.

2.1.5 Other Assignments
Additional, less involved, assignments were assigned by the instructor(s) as necessary.

These assignments were designed to reinforce a specific topic or provide additional exposure to

new topics.

*Corresponding author (H. Hakimzadeh). Tel/Fax: +1-574 520 4517. E-mail addresses:
hhakimza@iusb.edu. 2011. International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies. Volume 2 No.5. (Special Issue)
ISSN 2228-9860. eISSN 1906-9642. Online Available at http://TuEngr.com/V02/493-506.pdf

501

Table 1: Assignment to Curriculum Mapping.

2.1.6 Evaluation Rubrics for Assignments
Tables 1 and 2 represent the instructors’ view of how each assignment contributes to the

overall learning goals of the class. Table 1 maps each assignment to the course curriculum

learning objectives. The learning objectives for the course are: understanding variables and

memory, I/O, conditionals, loops, modules, parameter passing, arrays, classes, files, and GUI.

Although the code that is provided to the student for each assignments include all of the

curriculum learning objectives, each assignment (and its corresponding laboratories) focuses

on a few of the objectives. For example, assignment 1 concentrates on variables, conditionals

and GUI, yet the code provided to the students also includes procedures, and classes.

Table 2: Overall Course Objectives to Assignment Mapping.

 Virtual
Tour

Geo-Tagging Video
Poker

Medical
Informatics

Dealing with Complexity 1 2 3 3
Fostering Creativity 2 3 3 3
Fostering Group Work 3 3 3 3
Showing Initiative 2 3 2 3
Research 1 2 2 3
Problem Solving 1 2 3 3
Understanding code 1 2 3 3

 Variables,
Operators

Conditionals

Loops

Procedures,
Functions

Arrays,
Collections

Classes,
Objects

File
I/O

GUI

Assign 1
(Virtual Tour) 1 1 0 0 0 0 0 1

Assign 2
(Geo-Tagging) 2 2 1 0 0 1 0 2

Assign 3
(Video Poker) 2 2 1 1 1 1 1 2

Assign 4 (Medical
Informatics) 2 2 1 1 1 1 1 2

Assign 5
(Virtual Tour) 3 2 2 2 2 1 2 3

Assign 6
(Geo-Tagging) 3 2 3 2.5 2.5 1.5 2 3

Assign 7
(Video Poker) 3 3 3 2.5 3 1.5 2 3

Assign 8 (Medical
Informatics) 3 3 3 2.5 3 1.5 2 3

502 Hossein Hakimzadeh, Raman Adaikkalavan, and James Wolfer

Table 2 maps each assignment to the overall course objectives. Each assignment is rated by

the instructor in terms of overall complexity, required creativity, group interaction, initiative,

research, problem solving, reading and understanding programs, and developing new code.

2.2 Skill Building Labs
While working on PART-1 and PART-2 of each assignment, the students are also required

to complete a number of “Skill Building” labs (approximately 3 labs per assignment). These

hands-on laboratory exercises provide the essential programming skills necessary to understand

and complete their future assignments. The challenge in doing the assignments is most often

related to integration of skills in order to solve a larger and more complex problem.

2.3 Active Learning: Classroom and Group Activities
The traditional lecture-style classrooms are not suitable for group interaction or activities

and having an appropriate classroom is essential to the success of this course. In order to foster

easier group interaction and small community based learning, we have designed and

constructed a new active-learning classroom inspired by the SCALE-UP (Beichner, 2007)

classroom design. The classroom is specifically designed for group activities. Students sit

around a collaborative station (each station can have up to five members). In this class, groups

usually have two or three members. Each station is equipped with a large display monitor

attached to a computer. The classroom walls are used as whiteboards for group discussions. We

have developed various timed group activities specifically for this course to enhance student

learning. Below, we discuss one of those group activities.

Peer Learning: In this activity a problem is given to teams consisting of two students. Each

team is required to solve the problem using the software development life cycle model. Teams

have to analyze the problem and develop algorithms using the white board. The instructor

serves as a consultant to the teams. Teams that have completed their algorithm are asked to visit

another team and evaluate their algorithm. After the evaluation period is complete, the

instructor discusses the algorithms developed by each team, and demonstrates the pattern

involved in solving the problem. This activity allows peer learning and also helps the instructor

to demonstrate the various ways in which a problem can be solved. The next step in this activity

is to translate the algorithm to a computer program. This allows the students to see how their

algorithm works in the computer.

*Corresponding author (H. Hakimzadeh). Tel/Fax: +1-574 520 4517. E-mail addresses:
hhakimza@iusb.edu. 2011. International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies. Volume 2 No.5. (Special Issue)
ISSN 2228-9860. eISSN 1906-9642. Online Available at http://TuEngr.com/V02/493-506.pdf

503

2.4 Self and Peer Evaluation
Having students work within a team environment makes it more challenging to maintain

accountability. In order to promote individual accountability, we have developed separate

forms for self and peer evaluation. After each assignment, each student must report his or her

contribution (as well as their team members) to the overall effort. The reporting categories

include group participation, brain storming, data collection, data analysis, design activities, and

overall contribution.

3 Reflections and Student Feedback

The student feedback seems to support the primary course objectives of improving

retention by systematically introducing problem solving and basic programming skills.

Anecdotally, the students rated the course as good to excellent. Informal comments indicated

that they were initially anxious about learning problem solving and programming, however as

the course progressed, they started to gradually understand the patterns of problem solving.

Many seemed to feel that the course was at times overwhelming, and some found that working

together as a team was stressful.

Positive:

• Pace of the course was good.

• Labs were helpful to understand the material.

Figure 5: Active Learning Classroom

504 Hossein Hakimzadeh, Raman Adaikkalavan, and James Wolfer

• Lecture handouts and videos were useful in the learning process.

• Teamwork helped to work and learn more effectively.

• Some of our programming labs were designed to walk the student through the

problem solving step in detail, causing some students to ask for labs without any

walk through.

• Course was found to be helpful, would recommend the course to other students as

their first computer science class.

Negative:

• More lab time would have been helpful.

• Some students felt that programming should have been introduced much earlier.

• Despite efforts to design interesting assignments, encouraging peer learning,

providing ample online resources, some students still found the course challenging.

• At this point the course does not require a text book. Some students indicated

preference for having a text book, but the majority felt that the online resources as

well as the handouts provided in class were sufficient.

Reflections

• Significant planning and development has been put toward crafting assignments

that are both interesting and represent real-world problems. Although anecdotal

student comments are generally positive, since this is only the third semester that

this class has been offered there is insufficient quantitative data to report. In order

to assess student experiences in the course, the authors have created a survey

instrument which can be accessed online at

http://www.cs.iusb.edu/~A290/B100_Student_Survey.pdf

• As of the fall of 2010 semester, this course is being conducted in a newly

constructed active learning classroom designed to support group interaction. Based

on our observations of student interaction, we believe that the majority found the

classroom to be an effective learning environment. We will be soliciting student

feedback with respect to the classroom activities, such as peer learning and group

exercises in the upcoming semesters.

*Corresponding author (H. Hakimzadeh). Tel/Fax: +1-574 520 4517. E-mail addresses:
hhakimza@iusb.edu. 2011. International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies. Volume 2 No.5. (Special Issue)
ISSN 2228-9860. eISSN 1906-9642. Online Available at http://TuEngr.com/V02/493-506.pdf

505

4 Conclusion

This paper describes a new approach for teaching CS0. The goal of this approach is to
make computer science and informatics more accessible to aspiring majors and to improve
retention. The approach employs guided exercises using an active learning classroom and
laboratory environment. The course engages the students in teams of two or three, working on
real-world problems, collecting and cleansing data, conducting research, performing hands-on
labs, completing in-class active learning exercises, reading, and writing code. Compared with
the traditional CS1, student motivation was high, with higher than normal attendance, and
increased student retention. We anticipate that the majority of these students will make the
transition to CS1, and we look forward to evaluating student success in CS1. Although the
results are preliminary, they appear to be promising. Based upon our experience and student
feedback, we believe that the new CS0 course successfully assists students with the gradual
development of the critical thinking, and problem solving skills, necessary to succeed in
Computer Science and Informatics.

5 References

Barnes, T., et al. (2007) Game2Learn: Building CS1 Learning Games for Retention, In
Proceedings of the 12th annual SIGCSE conference on Innovation and technology in
computer science education (ITiCSE), pp. 121-125.

Batzinger, R., Hakimzadeh, H., (2011) Laboratory Exercises for A201 Introduction to
computing. Online: http://mypage.iusb.edu/~hhakimza/201_505/index.html

Beichner, R. (2007). The Student-Centered Activities for Large Enrollment Undergraduate
Programs (SCALE-UP) Project. In Research-Based Reform of University Physics (1).
Online: http://www.ncsu.edu/PER/SCALEUP/Classrooms.html,
http://scaleup.ncsu.edu/

D'Souza, D., et al. (2008) Transforming Learning of Programming: a Mentoring Project, ACE
'08: Proceedings of the tenth conference on Australasian computing education -
Volume 78, pp. 75-84.

Franke, B., Catching Plagiarists (2008). Online:
http://nifty.stanford.edu/2008/franke-catch-plagiarists/#introduction

Imberman, S., P., Klibaner, R. (2005) A Robotics Lab for CS1, Journal of Computing Sciences
in Colleges, 21(2), Consortium for Computing Sciences in Colleges, pp. 131-137.

IU South Bend Admission Rates (2011), IU Institutional Research and Reporting
http://www.iu.edu/~uirr/reports/compliance/common/index.shtml and
http://www.iu.edu/~uirr/reports/compliance/doc/common_dataset/CDS_2010/IUSB_2
010.pdf (Sections C and D)

506 Hossein Hakimzadeh, Raman Adaikkalavan, and James Wolfer

Matzko, S., Davis, T., A. (2006) Teaching CS1 with Graphics and C, inroads – SIGCSE
Bulletin, 38(3), pp. 168-172.

McConnell, J., J. (2006) Active and Cooperative Learning: Final Tips and Tricks (Part IV),
inroads – SIGCSE Bulletin, 38(4), pp. 25-28

McGuire, M., Murtagh, T., P. (2008) Huff(man)ing and Puffing – Huffman Image
Compression. Online: http://nifty.stanford.edu/2008/mcguire-murtagh-huffman-image/

Pamela B. Lawhead, P.B., et al. (2003) A Road Map for Teaching Introductory Programming
using LEGO© Mindstorms Robots, SIGCSE Bulletin, 35(2), pp. 191-201.

Race to the Top (2009): http://www.whitehouse.gov/the-press-office/fact-sheet-race-top

Reed, D. (2002) Nifty Assignments. Online: http://www.dave-reed.com/Nifty

Shiflet, A. B. (2007) Spreading of Fire. Online: http://nifty.stanford.edu/2007/shiflet-fire/

STEM - Science Technology Engineering and Mathematics initiative (2007), The Department
of Education and the National Science Foundation. http://www.nsf.gov/nsb/stem/

Stone, J, A. (2006) Using a Machine Language Simulator to Teach CS1 Concepts, inroads
–SIGCSE Bulletin, 38(4), pp. 43-45

Taylor, B., Azadegan, S. (2008) Moving Beyond Security Tracks: Integrating Security in CS0
and CS1, In Proceedings of the 39th SIGCSE technical symposium on Computer
science education (SIGCSE), pp. 320-324.

Whittington, K., Yacci, M. (2008) Active Learning for Classroom Management Model,
Proceedings of the Informing Science & IT Education Conference, pp. 231-239. Online:
http://proceedings.informingscience.org/InSITE2008/InSITE08p231-239Whit484.pdf

Dr.Hossein Hakimzadeh is an Associate Professor of Computer Science and Informatics at Indiana University
South Bend, USA. His current research interests include database systems, software engineering, and computer
science education.

Dr.Raman Adaikkalavan is an Assistant Professor of Computer Science and Informatics at Indiana University
South Bend, USA. He received his Ph.D. in Computer Science and Engineering from The University of Texas
at Arlington in 2006. His current research interests include security in computing, data stream processing,
complex event processing, and elements of teaching and pedagogy.

Dr.James Wolfer is a Professor of Computer Science and Informatics at Indiana University South Bend, USA.
His research interests include naturally inspired computing, medical imaging, graphics, and education.

Peer Review: This article has been peer reviewed and accepted by IAJC-ASEE International

Joint Conference on Engineering and Related Technologies sponsored by IAJC,

ASEE, IEEE, venue at University of Hartford, USA during April 29-30, 2011.

