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The feed-mix problem is primarily transformed into a 
mixing situation applying a mathematic formulation with 
uncertainties. These uncertainties generate the numerous 
expansions of alternative constraint equations. The given 
problem has been formulated as mathematic models which 
correspond to a large-scale Stochastic Programming that cannot 
be solved by the most popular ordinary calculation method, 
Simplex Method: LINPROG.  This research aims to investigate 
effective methodology to reveal the optimal solution. The 
authors have examined the method of Bender’s decomposition: 
BENDER and developed both methods into MATLAB® program 
and calculated comparatively.  The results  revealed  that  the 
nearest optimal solutions can be determined by means of a 
Two-stage Stochastic Programing incorporated with Bender’s 
decomposition at the most intensive number of uncertainties 
and take less calculation time  than by LINPROG. 
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1 Introduction 

Many animal food mixing industries are confronted with a decision making problem on 

an appropriate recipe.  That is to say that the determination of raw materials which contain 

various kinds of feed ingredients added to the process are influenced by expectations of 
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obtaining a product with lower costs, standardization, or surpass  nutritive requirement.  Such 

a feed mix problem is complex and cannot be solved by traditional calculation methods.  

There are many approaches which have been applied, such as Pearson’s square method which 

is very suit for only two-feed ingredients to be mixed [9] and Trial and Error which is one of 

the most popular means for feed formulation but it consumes a lot of  time for calculation 

[4],[9].  Classical Linear Programming (LP) is widely used for modeling the animal feed 

problem.  The normal objective in formulating the feed mix is to minimize cost subject to 

adequate nutrient ingredients (input raw materials) and the required nutrient constraints 

(output nutrient values) [1].  However, due to the various constraints that need to be 

conserved, the problem has been extended to become a large-scale problem with 

uncertainties. Therefore, when using LP method, it is difficult to determine a good balance of 

nutrients in the final solution. The constraints in LP are also rigid leading to an infeasible 

solution [1], [2]. However, LP has a positive highlight as a deterministic approach, because it 

can provide the best solution of hundreds of equations simultaneously [14].   By Stochastic 

approaches, there are also various methods that have been applied for such a complex 

problem e. g: Chance Constraint (CCP) and Quadratic Programming (QP), Risk Formulation, 

and Genetic Algorithm (GA). In addition to these mentioned methods, there are also some 

methods with other possible algorithms such as Integrated LP and Dynamic Programming 

(DP), Integrated LP and Fuzzy, Integrated GA and Fuzzy, Integrated GA and Monte Carlo 

Simulation. All of these methods are arranged as Integrated approaches [13]. 

 

This research does not take into consideration all the above mentioned issues, but aims to 

investigate another new effective calculation method for the feed mix problem and proposes 

the application of Two-stage Stochastic Linear Programming (TSL) incorporated with the 

method of Bender’s Decomposition (BENDER).  Hence, this paper describes the preliminary 

stage of mathematic formulation, the setup of matrix systems and program development, 

MATLAB@ program, and represents the optimization results of a case study. 

2 Problem Analysis and Methodology 

The classical diet problem is considered as a Linear Programming problem with general 

LP matrix: TMin Z = C X,  Subject to AX = b,  and X 0  for all.≥   Because of the limitation of 

the calculation devices, the prior results were revealed without regard for some variables with 
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high variance constraint coefficients.  Nowadays, because of the higher performance of 

computational calculation, the development of the mentioned LP model when the system 

uncertainties are taken into account can be written as 
T T TMin Z = C X  + g U + h V

subject to AX + U - V = b
 x , u, v 0,  ≥

    (1) 

where  TC X  represents the main cost and T Tg U + h V  the additional corrective costs 

of materials supplied  subject to  AX + U - V = b  , where  A  is the coefficient of  the 

decision variable X (material quantity), U and V stand for the least and the excess mixed 

output quantities respectively. Awareness of nutrition values contained in U and V have an 

effect on the RHS as well. This issue will be discussed in the subtopic 2.3 later.   Meanwhile 

the Two-stages Linear Programming Model [6], [7], [10], [11], [16] can be written as: 

 

Maximize 
Qk n

z = E [c ] x + P [ c x ]qj j qj qjq=1j=1 j=k+1
∑ ∑ ∑     (2) 

 
Subject to 

 1st.Stage      
k

a x = b for i = 1, 2,...,ij j ij=1
r∑    (3) 

 

   2nd.Stage     
k k

a x + a x = bqij j qij qj qij=1 j=1
∑ ∑    (4) 

 
     i = r +1,...m for q = 1,2,...,Q  
     x 0; x 0,j qj≥ ≥  

 
where 
 Pq  probability of occurrences of scenerio q    (q=1,2,…,Q) 
 xqj       extent variable in the 2nd.stage at constraint  j by event q   

Notation 
1.  The value of each random element is independent of the levels of all x j     

2.  The levels of x j   for  j = 1, 2 ,…, k  ≤   n  must be fixed at the 1st. stage 

3.  The constraint  i = 1, 2… r  contains only the 1st.stage variables, and the associated aij  
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and bi  are known with certainty. 

4.  The variables of xqj  in the 2nd. Stage, where  i = r +1, 2, …, m  and  q = 1, 2, …, Q   

5.  The values of cqj , aqij  and  f bqi , for  i = r+1, 2, …, m  and j = 1, 2 ,…, n  are 

represented by the set of  ( cqj , aqij , bqi ) with probability  Pq  , for  q  =  1, 2, …, Q 

2.1 The problem analysis 
The animal food mixing as shown below in Table 1 was discussed by a production team. 

The problem is to determine the optimal quantities of the three main input raw materials to be 

added to the mixing process. 

 

Table 1: The input ingredient amounts represented as x1, x2, and x3 were unknown. 
Protein (%) Calcium (%) cost / unit 

x1 Crushed dried fish 51-53 10-11 70Baht 
x2 Tapioca 2-3 5-7 40Baht 
x3 Sorghum - 8-9 23Baht 
m Market required between19-20 Not less than  8  
Note: Baht is the currency used in Thailand (As of January 2013, 30Baht = US$1). 

 

The market demand d = 1.000 ± 0.001 unit weigh t 

 

Let x1, x2 and x3 be the non-negative quantities of the crushed dried fish, tapioca and 

sorghum respectively. They are mixed to yield 1 unit of the minimum cost diet that satisfies 

all the specified nutritional requirements m =2   prescribed as following:  

protein   not in excess of  20 % (Upper Boundary) 

  not less than   19 % (Lower Boundary) 

calcium  not less than     8 % 

Incremental corrective action cost of nutrient value, respectively 

FEXD   =  fexd    =  7 Baht/ Unit of protein  

FLES   =  fles     =  5 Baht/ Unit of protein 

FEXD   =  fexd   =  7 Baht/ Unit of calcium 

FLES   =  fles      =  4 Baht/ Unit of calcium  

Incremental corrective action cost of ingredient (raw material), respectively 

FEXDD  =  fexdd   =  30     Baht/ kg  

FLESD   =  flesd    =  5000 Baht/ kg 
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2.2 Methodology 
Such a problem is a typical large-scale stochastic linear programming with full system 

uncertainties (tolerances). The decision values of variables xj   are decided by the coefficient 

of a ± tol,   a ± tol, ... , a ± toln1 2 , right-hand-side ( RHS) parameter vector, the nutrition values 

bi of b ±tol, b ±tol, ... , b ±tolm1 2  and moreover, the size of the market demand  d ±tol as 

Figure1 below:  

 
Figure 1:  The problem type: A-B-D Uncertainty [15]. 

2.3 Model Formulation 
To formulate the given problem in the form of TSL_ model and to allocate the 

calculation matrix system, some occurrence possibilities were assumed as follows: 

 
Assumptions A): 

PN  the occurrence possibility for each nutrient constraint 

PD  the occurrence possibility for each demand constraint 

PN = PD = P (Point) for this case study, the distributions of the probability of PN and PD are 

assumed to be uniform distributions. Thus, the possibilities PN and PD will be 

equal and also equal to P (Point) where the P (Point) is the initial input number 

for allocating the division number of all system uncertainty intervals. 

E  incremental event step, for this study, E = PN x PD 

Constr Constraint, C = m x Event + PD 

Var Variable, Var = n + 2Constr 
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Assumptions B): 

The lower and upper boundaries of all constraint variables are allocated from the middle 

point of their tolerances:  

 

(mid) (tol) (mid) (tol)
ij ij ij ij ij

(mid) (tol) (mid) (tol)
i i i i i

(mid) (tol) (mid) (tol)
k

(mid) (tol) (mid) (tol) (mid) (tol)
ij ij i i

a a - a ; a + a

b b - b ; b + b

d d - d ; d + d

a ; a ; b ; b ; d and d R

⎡ ⎤∈ ⎣ ⎦
⎡ ⎤∈ ⎣ ⎦
⎡ ⎤∈ ⎣ ⎦

∈

    (5) 

 

Referring to the previous notations (1), (2), (3), (4) and (5) including analyzing the above 

given diet problem in Table 1, the calculation models were developed to be (6), (7) and (8). 

The objective function of the given problem was to minimize the total cost z min. which is the 

sum of the raw material unit cost cj multiplied by the amount of xj, plus the sum of all 

necessary incremental corrective action costs for both qualitative and quantitative values not 

meeting the specification, Equation (6).  The sum of the product of  the quantity xj and its 

uncertain coefficients ija l  including the sum of nutritive slack ui kl  and surplus vi kl  of each 

calculation scenario have to be balanced to the right-hand-side RHS , i.e. the vectors of 

required nutritive value of ib l  multiplied by the demand  d , in Equation (7). Simultaneously, 

the LHS, the sum of xj and addition of the slacks uk and surplus vk has to be associated with 

the quantity requirement of d. In practice, the demand d cannot be exactly equal to 1 unit, but 

rather it comprises an allowance of ± 0.001 in unit weight (0.1% error). 

Minimize z 
n m P P P

c x + (g u + h v ) + (g u + h v )j j i k i k i k i k k k k k=1j=1 i=1k=1 k=1
′ ′∑ ∑ ∑ ∑ ∑l l l ll

   (6) 

 Subject to  

  
n

a × x + u - v = b × dij j i k i k i kj=1
∑ l l l l  ; i k∀ l    (7) 

 k k k

n
x + u v = djj=1

′ ′−∑   ;   k∀     (8)
 

x ; u ; v ; u ; v 0j i k i k k k′ ′ ≥l l
    ;  i, j, k∀  

Where 
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k  denotes  the constraint  alternatives  

j  denotes the type of ingredient to be input to mixing process ( j=1,2,…,n ).  

i  denotes the type of nutrient composition which the market needs  ( i=1,2,…,m) 

cj  denotes the cost factor of raw material j- type  (cost/ unit weight = fx ) 

xj  denotes the quantity of raw material j- type  (weight unit = kg ).  

aij   denotes the nutrient value type i in material type  j  

bi   denotes the nutrient value (of product) type  i   /unit weight. 

ui kl    denotes the nutrient value (of product) i , at the event l which misses (slack ) 

  the target in the alternative k 

vi kl   denotes the nutrient value (of product) i , at the event which exceeds 

  (surplus ) the target in the alternative k   

i kg l   denotes the expected cost of nutrient value i / unit which misses the target  

  alternative k . FLES = fles 

i kh l   denotes the expected cost of nutrient value i / unit which exceeds the target 

  alternative k . FEXD  = fexd 

gk  denotes the expected cost of ku′   (by lack of demand) = FLESD  

hk  denotes the expected cost of kv′  (by exceeding demand) = FEXDD  

ku′   denotes the lower quantity of raw material in the alternative k 

kv′   denotes the excess quantity of raw material in the alternative k 

dk  denotes the market demand 1.000 weight unit with the standardized allowance 

  of ± 0.001 in unit weight (0.1 % error) for animal food production. 

2.4 Minimum Cost Calculation Model 
Minimize z = 

m
FLES FEXD FLESD FEXDD

P P P
(fx x + fx x + fx x ) + ( u + v ) + ( u + v )1 1 2 2 3 3 i k i k k k=1i=1 k=1 k=1

′ ′⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∑ ∑ ∑ ∑l ll  (9) 

Subject to 

 
n

a × x + u - v = b × dij j i k i k i kj=1
∑ l l l l        ; i k∀ l  

l
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   k k k

n
x + u - v = djj=1

′ ′∑  ; i,k∀  

 x ; u ; v ; u ; v 0j i k i k k k′ ′ ≥l l
    ;  i, j, k∀  

 

Substitute the given data from Table 1 into the minimal cost calculation model above

( )

2 P P
(70x + 40x + 23x ) + ((5,4) u + (7,7) v ) +1 2 3 i k i k=1i=1 k=1
P

5000 u + 30 vk kk=1

Minimize  Z   ⋅ ⋅∑ ∑ ∑

′ ′⋅ ⋅∑

= l ll

 
Subject to 

[51--53]x + [2--3]x + [0]x +u - v = [19--20] ,k1 2 3 1 k 1 k
[10--11]x + [5--7]x + [8--9]x + u - v = 8 ,k1 2 3 2 k 2 k

x + x + x + u - v = 1±0.001 k1 2 3 k k
' 'x , x , x 0, u , v 0 i, ,k1 2 3 i k i k

∀

∀

′ ′ ∀

≥ ≥ ∀

ll l

ll l

ll l

 

1st.Event; for 1, =1, k =1i = l    (at lower boundary) 

51x + 2x + 0x +u v = 19 (0.999)1 2 3 111 111
10x + 5x + 8x + u - v = 8 (0.999)1 2 3 211 211
x + x + x + u - v = 0.9991 2 3 1 1

− ⋅

⋅

′ ′

 

2nd.Event; for 2, = 2, k = 2i = l   (at middle value) 

52x + 2.5x + 0x +u - v = 19.5 (1.000)1 2 3 122 122
10.5x + 6x + 8.5x + u - v = 8 (1.000)1 2 3 222 222
x + x + x + u - v = 1.0001 2 3 2 2

⋅

⋅

′ ′

 

3rd.Event; for 3, = 3, k = 3i = l  (at upper boundary) 

53x + 3x + 0x + u - v = 20 × (1.001)1 2 3 133 133
11x + 7x + 9x + u - v = 8 × (1.001)1 2 3 233 233
x + x + x + u - v = 1.0011 2 3 3 3′ ′

 

 

The above formulations just demonstrate how to set up only three events (l): lower 

boundary (LB), middle value, and upper boundary (UB).  But, in this research, the calculation 

models were planned to be set up throughout the tolerance intervals of all relevant variables 
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and divide those with the same number of P, by which the resolution (res), through all 

uncertainty intervals can be definable.  One must beware of the LB and UB of each event 

which correspond with the given tolerances. 

2.5 The TSL incorporated with Bender’s Decomposition 
The concept of the Bender’s decomposition is to predict the second-stage costs by a 

scalar θ and replace the second-stage constraints by cuts, which are necessary conditions 

expressed in terms of the first-stage variables x and θ [6], [10], [12]. The initial model can be 

modified, and written as shown below: 

 

The 1st.stage:  Primal problem 

 

T T TMin Z = C X  + g U + h V

subject to AX + U - V = b

 x , u, v 0, ≥
     (10) 

The 2nd.stage: The Dual Bender’s Decomposition 

( )

( )

( )

U - V = b - AX

b - AX 0
T TMax ω = b - AX Y + C X

T
θ = b - AX

T T Tcond = cond; θ+ Y A-C X b Y

≥

∑

≥⎡ ⎤
⎣ ⎦

    (11) 

( )
Min θ+X;

T T TSubject to θ + Y A-C X b Y≥
     (12) 

Stop condition 
Check θ = ? No Get 1X, 2X,.....

Yes Get θ and X Min Z = Max ω Stop

Xnewω → →

→ ⇒ ⇒
 

 

The selected algorithm to attain a satisfactory solution was the integration between 

TSL and Bender’s decomposition.  As shown in Figure 2, the main concept of Bender’s 

decomposition is to split the original problem into a master problem and a sub-problem, 

which in turn decomposes into a series of independent sub problems, one for each.  The

latter are used to generate cuts.   The X initial is to be randomly selected to substitute in terms of 
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the constraints inequality equation. If the result, by substitution of X initial, is equal to or 

greater than 0, then   iy  = gi.   If the result (substitution of X initial) is less than 0, then   iy  = - h.  

The xinitial and the selected yi are substituted in the Dual equation and in the inequality (to 

generate the optimal cut) to attain the maximum value of   ω  and θ  respectively. By 

minimization of the  + 0Xnew ; subject to new
T T Tθ (y A-c ) x b y+ ⋅ ≥  , Equation (12) renders 

θ  and x new .  If the obtained  and  are equal at the step of convergence test,  and  are 

to be approximately equivalent to zDual which can be obtained as an optimal solution. 

 
Figure 2:  TSL incorporated with Bender’s decomposition [6], [10], [11], [15]. 

 

2.6 Calculation Tools 

The mathematical calculation tool, MATLAB® Program was selected to solve this 

problem. The MATLAB®_Software / Verion.2006a and a HP_Pavillion_IntelCore_2Qurd 

Inside, No.: 016-120610000, personal computer, at the Department of Industrial Engineering, 

θ

ω θ ω θ
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Thammasat University, Pathumtani were used.  The calculation steps were as follows 

 

Step1. In accordance with the mathematic formulation, previous topic 2.4, the matrices 

 systems were  established according to the ordinary simplex method. The initial input 

 variable matrix was expressed in two possible substitutions: randomization and dual-

 simplex algorithm. 

Step2. Model building according to the method of Bender’s decomposition followed the   

programming flowchart as shown in Figure 2. 

Step3.  Preparation of MATLAB® programming named: lstart, start,  setupmodel,  solvemodel; 

 linMAT, bender, dataABD_Uncertainty.mat, result, pline, selfcat, speye, and vspace  

Step4. Creation of data file: a, a_tol, b, b_tol, d, d_tol, fx, fles, fexd, flesd and fexdd 

Step5. Program execution by the program named:  lstart (input parameter is P-Number). 

 

2.7 Computational Calculation  
To solve the above formulated problem, the primal-dual Simplex method /LINPROG, 

Equations (1) was applied to compare with two-stage stochastic linear programming 

incorporated with the method of Bender’s Decomposition, Equations (9), (10), (11), (12) 

referred to Equations (2), (3), (4), (6), (7), and (8). 

 

Assumptions: 

1. The quantity of each nutrient value in each type of raw material is a continuous 

event. The values, which are independent of each other, are uncertain. 

However, the values intervals are recognized to be uniform distributions. 

2. All scenarios are also uniformly distributed and independent on each other. 

 

As the solving tools for comparative calculation, the results of both selected method can 

be collected after the calculation iteration has terminated.  The programs for primal-dual 

simplex and Bender’s decomposition were developed. The starting program referred to as 

‘Start.m’ constitutes the main application to perform the execution of all relevant functions.  

The matrix systems corresponding with Equations (9), (10), (11), (12) are established.  The 

program referred to as ‘linMAT.m’ is a matrix to receive all loaded input data whereas the 
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program name: ‘Speye.m’ serves to construct a large identity matrix system with the 

‘Selfcat.m’ application to await the parameter patterns modification prior to the continuation 

of the Bender’s decomposition program ‘Bender.m’ [15]. 

 
Table 2:     Lower section cut off at the uncertainty number of P=2:2:50. 

P Event Constr Var x1_BEN x2_BEN x3_BEN Sx_BEN Z_BEN Ti_BEN x1_LIN x2_LIN x3_LIN Sx_LIN Z_LIN Ti_LIN
2 4 10 23 0.3631 0.2420 0.3949 1.0000 48.61 0.4924 0.3631 0.2420 0.3949 1.0000 48.61 2.3399
4 16 36 75 0.3633 0.2422 0.3946 1.0000 48.60 0.1767 0.3633 0.2422 0.3946 1.0000 48.60 0.0558
6 36 78 159 0.3632 0.2422 0.3947 1.0000 48.59 0.1995 0.3632 0.2422 0.3947 1.0000 48.59 0.0868
8 64 136 275 0.3617 0.2761 0.3622 1.0000 48.57 0.1284 0.3617 0.2762 0.3621 1.0000 48.57 0.2207

10 100 210 423 0.3617 0.2768 0.3615 1.0000 48.54 0.1818 0.3617 0.2766 0.3617 1.0000 48.54 0.3620
12 144 300 603 0.3617 0.2769 0.3614 1.0000 48.52 0.2010 0.3617 0.2769 0.3615 1.0000 48.52 0.8774
14 196 406 815 0.3618 0.2739 0.3643 1.0000 48.52 0.1472 0.3618 0.2739 0.3643 1.0000 48.52 1.4670
16 256 528 1059 0.3617 0.2762 0.3621 1.0000 48.51 0.1660 0.3617 0.2762 0.3621 1.0000 48.51 1.1920
18 324 666 1335 0.3617 0.2761 0.3621 1.0000 48.51 0.1456 0.3617 0.2765 0.3618 1.0000 48.51 0.9501
20 400 820 1643 0.3617 0.2766 0.3617 1.0000 48.51 0.1393 0.3617 0.2766 0.3617 1.0000 48.51 0.2607
22 484 990 1983 0.3617 0.2764 0.3619 1.0000 48.50 0.1514 0.3617 0.2768 0.3616 1.0000 48.50 0.3611
24 576 1176 2355 0.3617 0.2768 0.3615 1.0000 48.50 0.1820 0.3617 0.2769 0.3614 1.0000 48.50 0.7045
26 676 1378 2759 0.3617 0.2763 0.362 1.0000 48.50 0.1695 0.3617 0.2763 0.362 1.0000 48.50 1.5480
28 784 1596 3195 0.3617 0.2763 0.362 1.0000 48.50 0.1490 0.3617 0.2765 0.3618 1.0000 48.50 0.6279
30 900 1830 3663 0.3617 0.2763 0.362 1.0000 48.50 0.1589 0.3617 0.2766 0.3617 1.0000 48.50 0.7172
32 1024 2080 4163 0.3617 0.2769 0.3614 1.0000 48.49 0.1537 0.3617 0.2767 0.3616 1.0000 48.49 0.5023
34 1156 2346 4695 0.3617 0.2767 0.3616 1.0000 48.49 0.2377 0.3617 0.2768 0.3615 1.0000 48.49 0.6613
36 1296 2628 5259 0.3617 0.2769 0.3614 1.0000 48.49 0.1867 0.3617 0.2769 0.3614 1.0000 48.49 2.2707
38 1444 2926 5855 0.3617 0.2765 0.3618 1.0000 48.49 0.1819 0.3617 0.2765 0.3618 1.0000 48.49 1.2727
40 1600 3240 6483 0.3617 0.2770 0.3614 1.0000 48.49 0.1650 0.3617 0.2766 0.3617 1.0000 48.49 0.8648
42 1764 3570 7143 0.3617 0.2764 0.3619 1.0000 48.49 0.1649 0.3617 0.2767 0.3616 1.0000 48.49 1.1724
44 1936 3916 7835 0.3617 0.2767 0.3616 1.0000 48.49 0.1892 0.3617 0.2768 0.3615 1.0000 48.49 0.8411
46 2116 4278 8559 0.3617 0.2768 0.3615 1.0000 48.49 0.1923 0.3617 0.2768 0.3615 1.0000 48.49 3.1807
48 2304 4656 9315 0.3617 0.2768 0.3615 1.0000 48.49 0.1462 0.3617 0.2769 0.3614 1.0000 48.49 3.4919
50 2500 5050 10103 0.3617 0.2767 0.3616 1.0000 48.49 0.1504 0.3617 0.2766 0.3617 1.0000 48.49 2.8000  

      

 
Figure 3:   The congruence of x1_BEN vs. x1_LIN; x2_BEN vs. x2_LIN and x3_BEN vs. 

x3_LIN, x3_LI                 
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3 Results and Discussion 

The calculation results were enumerated to check the calculation efficiencies of both the 

applied methodologies and the programming development. To be discussed in this research 

paper are the expected values of all response factors and their calculation times on a limited 

set of personal computers. Hence, there are three sections discussed as follow: 

3.1 The result at the lower section (P = 2:2:50) 
P = 2:2:50 denotes for the value of P starting at 2: increasing step 2: and ending at 50.  

According to assumption a) on page 6, the incremental event step E = P2 for uniform 

distribution and constraint number C = m × Event + PD.  The values of x1_BEN, x1_LIN; 

x2_BEN, x2_LIN; x3_BEN, x3_LIN are congruent and consistent variants as represented in 

Table 2 and in Figure 3.  The results of Zmin_BEN and Zmin_LIN represent their respective 

congruencies and at P= 32 (in Figure 4, at 16 on the axis) . However, consideration of the 

series plot of Ti_BEN and Ti_LIN in Figure 5 shows the calculation time fluctuations of 

Ti_LIN, but not for Ti_BEN. 
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Figure 4:  Zmin_BEN and  Zmin_LIN  Figure 5: Ti_BEN and Ti_LIN 

 

3.2 The results at the middle section (P = 50:2:106) 
At the intensive computational events, the values of x1_BEN, x3 _BEN, z_BEN and 

x1_LIN, x3 _LIN, z_LIN are stable congruent with a very small consistent variance as 

reported in Table 3 below: 
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Table 3:  Upper section cut off at the uncertainty number P = 50:2:106. 
P Event Constr Var x1_BEN x2_BEN x3_BEN Sx_BEN Zmin_BEN Ti_BEN x1_LIN x2_LIN x3_LIN Sx_LIN Zmin_LIN Ti_LIN
50 2500 5050 10103 0.3617 0.2767 0.3616 1.0000 48.49 0.2884 0.3617 0.2766 0.3617 1.0000 48.49 3.3737
52 2704 5460 10923 0.3617 0.2766 0.3617 1.0000 48.49 0.1726 0.3617 0.2767 0.3616 1.0000 48.49 1.2569
54 2916 5886 11775 0.3617 0.2772 0.3611 1.0000 48.49 0.2258 0.3617 0.2767 0.3616 1.0000 48.49 1.7699
56 3136 6328 12659 0.3617 0.2771 0.3612 1.0000 48.49 0.1420 0.3617 0.2768 0.3615 1.0000 48.49 1.3229
58 3364 6786 13575 0.3617 0.2768 0.3615 1.0000 48.48 0.1641 0.3617 0.2768 0.3615 1.0000 48.48 2.8755
60 3600 7260 14523 0.3617 0.2771 0.3612 1.0000 48.48 0.2000 0.3617 0.2769 0.3614 1.0000 48.48 2.3254
62 3844 7750 15503 0.3617 0.2768 0.3615 1.0000 48.48 0.2491 0.3617 0.2767 0.3616 1.0000 48.48 5.5466
64 4096 8256 16515 0.3617 0.2767 0.3616 1.0000 48.48 0.2022 0.3617 0.2767 0.3616 1.0000 48.48 1.5803
66 4356 8778 17559 0.3617 0.2766 0.3617 1.0000 48.48 0.2676 0.3617 0.2768 0.3615 1.0000 48.48 2.5353
68 4624 9316 18635 0.3617 0.2768 0.3604 0.9989 48.48 0.1525 0.3617 0.2766 0.3607 0.9990 48.48 3.0060
70 4900 9870 19743 0.3617 0.2764 0.3567 0.9947 48.47 0.2050 0.3617 0.2762 0.3568 0.9947 48.47 6.6884
72 5184 10440 20883 0.3742 0.0000 0.5166 0.8908 48.39 0.1865 0.3741 0.0000 0.5166 0.8908 48.39 3.0824
74 5476 11026 22055 0.3742 0.0000 0.5141 0.8882 48.18 0.1798 0.3742 0.0000 0.5140 0.8882 48.18 2.0440
76 5776 11628 23259 0.3742 0.0000 0.5116 0.8858 47.98 0.1804 0.3742 0.0000 0.5116 0.8858 47.98 1.4806
78 6084 12246 24495 0.3742 0.0000 0.5094 0.8835 47.78 0.2126 0.3742 0.0000 0.5094 0.8835 47.78 2.0009
80 6400 12880 25763 0.3742 0.0000 0.5085 0.8827 47.60 0.1892 0.3742 0.0000 0.5085 0.8827 47.60 1.5094
82 6724 13530 27063 0.3742 0.0000 0.5062 0.8804 47.42 0.1766 0.3742 0.0000 0.5064 0.8806 47.42 1.4550
84 7056 14196 28395 0.3742 0.0000 0.5045 0.8787 47.24 0.1828 0.3742 0.0000 0.5045 0.8787 47.24 3.0142
86 7396 14878 29759 0.3742 0.0000 0.5026 0.8768 47.07 0.1794 0.3742 0.0000 0.5026 0.8768 47.07 6.0361
88 7744 15576 31155 0.3742 0.0000 0.5009 0.8750 46.91 0.1692 0.3742 0.0000 0.5008 0.8750 46.91 5.9829
90 8100 16290 32583 0.3742 0.0000 0.4991 0.8733 46.75 0.1697 0.3742 0.0000 0.4991 0.8733 46.75 4.6769
92 8464 17020 34043 0.3742 0.0000 0.4987 0.8729 46.59 0.1991 0.3742 0.0000 0.4987 0.8729 46.59 1.9615
94 8836 17766 35535 0.3742 0.0000 0.4971 0.8713 46.45 0.1917 0.3742 0.0000 0.4971 0.8713 46.45 4.8717
96 9216 18528 37059 0.3742 0.0000 0.4956 0.8698 46.30 0.1981 0.3742 0.0000 0.4956 0.8698 46.30 10.8197
98 9604 19306 38615 0.3742 0.0000 0.4942 0.8684 46.16 0.2047 0.3742 0.0000 0.4942 0.8684 46.16 4.3436

100 10000 20100 40203 0.3742 0.0000 0.4929 0.8671 46.03 0.2016 0.3742 0.0000 0.4929 0.8670 46.03 3.0834
102 10404 20910 41823 0.3742 0.0000 0.4925 0.8668 45.90 0.2233 0.3742 0.0000 0.4925 0.8667 45.90 3.4999
104 10816 21736 43475 0.3742 0.0000 0.4913 0.8655 45.77 0.1791 0.3742 0.0000 0.4913 0.8655 45.77 7.3899
106 11236 22578 45159 0.3742 0.0000 0.4901 0.8643 45.65 0.1778 0.3742 0.0000 0.4901 0.8643 45.65 3.6450

 
According to the numerical consideration shown in Table 3, the values of x1_BEN , 

x1_LIN; x2_BEN, x2_LIN ; x3_BEN, x3_LIN are congruent and consistent variants. The 

optimal values of Zmin_BEN and Zmin_LIN are also congruent and have tendencies to 

converge to the most optimal solution.  By contrast with this, the calculation times Ti_LIN 

and Ti_BEN are very different. The ratio of them is 2.5353:0.2676 = 9.474:1 at P = 66. The 

sums of Sx_BEN and Sx_LIN start to decrease after P = 66 as do the  Zmin values also.  

Figure 6, 7 and 8 show that the components of x3_BEN and x3_LIN were selected , but not 

x2_LIN and x2_BEN at P=72. 

 

In an actual factory, the producers can make a decision at this stage with Sx = 0.8908 unit 

weight and Zmin = 48.39.  If they want to obtain the sum Sx = 1.000 unit weight to meet 

demand, they can select the status of P = 66 with the optimal Zmin = 48.48 (higher cost).  A 

further perspective, Figure 9 represents the series plot of Ti_BEN and Ti_LIN with major 

fluctuations. the calculation  times of Ti_LIN are extremely variable, whereas  the calculation 

time Ti_BEN tends to be constant. 
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Figure 6: Sx_BEN and Sx_LIN      Figure 7: Min.cost Zmin_BEN and Zmin_LIN 
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Figure 8: The congruence of x1_BEN, Figure 9: Ti_LIN and Ti_BEN. 
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3.3 The results at the upper section 
Continuing the computational calculation by the Bender’s decomposition method with  

P = (106:2:1584) until the calculation terminated (out of memory on the HP_Pavillion_ 

IntelCore_2Quard Inside, No.: 016-120610000, personal computer), the nearest optimal 

solution can be accepted at P=1584 corresponding to  Zmin of 38.63Baht and Sx_BEN of 

0.8185 unit weight. Sx_BEN is not equal to 1 as the market demand. It depends upon the cost 

factors of flesd and fexdd . If  flesd is less than fexdd, it will be reasonable to produce the 

mixed product with lower amount from the demand. But, the optimization can reveal the 

lowest value of the Zmin as shown in Table 4 below. 
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Table 4:  The upper section cut off at the uncertainty number P = (1560:2:1584) 
P Events Constr Var x1_BEN x2_BEN x3_BEN Sx_BEN Z_BEN Ti_BEN
1560 2433600 4868760 9737523 0.3743 0 0.4445 0.8187 38.64 10.9534
1562 2439844 4881250 9762503 0.3743 0.0002 0.4442 0.8186 38.64 10.2998
1564 2446096 4893756 9787515 0.3743 0 0.4442 0.8185 38.64 10.3893
1566 2452356 4906278 9812559 0.3743 0 0.4442 0.8185 38.64 10.5075
1568 2458624 4918816 9837635 0.3743 0 0.4453 0.8197 38.63 10.4842
1570 2464900 4931370 9862743 0.3743 0.0001 0.4444 0.8187 38.63 11.056
1572 2471184 4943940 9887883 0.3743 0 0.4442 0.8185 38.63 10.0722
1574 2477476 4956526 9913055 0.3743 0 0.4445 0.8188 38.63 11.0531
1576 2483776 4969128 9938259 0.3743 0.0002 0.4445 0.8188 38.63 11.0438
1578 2490084 4981746 9963495 0.3743 0.0011 0.4446 0.8189 38.63 11.373
1580 2496400 4994380 9988763 0.3743 0.0055 0.4441 0.8185 38.63 10.543
1582 2502724 5007030 1E+07 0.3743 0 0.4445 0.8187 38.63 11.7056
1584 2509056 5019696 1E+07 0.3743 0 0.4442 0.8185 38.63 10.5942

OUT OF MEMORY
 

4 Conclusions 

At the first start with a lower division number of points P, the results obtained from the 

simplex method-LINPROG  and Bender’s decomposition were consistently equivalent. The 

calculation results were  almost  identical. These two algorithms are very suitable for small-

scale problems  but when increasing the division numbers (point P) there is, a rise of 

uncertainties numbers, the consequence of the enlargement of the constraint numbers. Some 

of response factors  were found to deviate from the target and thus failed in condition. 

Nevertheless, the calculation by both methods can be performed. The  LINPROG  method is 

extensive in calculation time and thus requires a large memory storage. On the personal 

computer, the calculation failed to determine the results at the earlier stage. 

 
Conversely, the Bender’s decomposition method can quickly and consistently obtain the 

nearest optimal solution up to the calculation termination due to being out of memory. The 

same problem and the same calculation tool, MATLAB® program, were also performed on a 

high performance computer.  The results showed the enormous effect of the system 

uncertainties  mainly influencing the calculation times.  It is noteworthy that the ratio of the 

mean time consumption of the LINPROG : BENDER is approximately equal to 232.77 :1 at 

P=2:2:500  on a general PC, whereas the results of the other response factors can be 

congruent. 



*Corresponding author (S.Thammaniwit). Tel/Fax: +66-2-5643001 Ext.3095, 3038. E-mail 
address: csomsak@engr.tu.ac.th.   2013  International Transaction Journal of 
Engineering, Management, & Applied Sciences & Technologies.     Volume 4  No.2      ISSN 
2228-9860   eISSN 1906-9642.   Online Available at http://TuEngr.com/V04/111-128.pdf 

127 

 

 

The authors hope that this calculation method, the integration of Two-stage stochastic 
linear programming incorporated with the Bender’s decomposition method,  compacted in 

general form of a MATLAB®  programming,  can  contribute  to supporting   decision making 

in other operations research areas as a low cost effective calculation tool. For future  research, 
this program is to be developed in form of a Graphic User Interface for convenience of use. 
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