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 In this research, an efficient formulation of off-line model 
predictive control for nonlinear systems is presented. The nonlinear 
systems are reformulated as linear parameter varying systems so 
their complexity is reduced without any loss of generality.  The 
on-line computational burdens are decreased by pre-computing 
off-line the sequences of explicit control laws corresponding to the 
sequences of polyhedral invariant sets. At each sampling time, the 
current state and the scheduling parameter are measured. The 
real-time control law is then calculated by linear interpolation 
between the pre-computed control laws. The results indicate that the 
proposed algorithm can achieve better control performance 
compared to the previously developed off-line robust model 
predictive control algorithm because the scheduling parameter is 
incorporated into the controller design.  
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1. Introduction 
Chemical processes are multivariable processes that change one or more chemical 

compounds to the desired products. Chemical processes are usually involved with many 

complex chemical reactions which are nonlinear. In order to efficiently control nonlinear 

chemical processes, a multivariable nonlinear control algorithm needs to be developed (Qin and 

Badgwell, 2003; Ramesh, et al., 2009; Manenti, 2011). 
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Model predictive control (MPC) is an advanced control algorithm for multivariable 

processes. MPC is widely used in many chemical processes because input and output 

constraints are considered in a systematic manner (Morari and Lee, 1999; Mayne, et al., 2000; 

Lee, 2011). A linear model is typically used in MPC formulation because the on-line 

optimization problem can be easily solved. However, most of the chemical processes are 

nonlinear. When the operating conditions undergo changes, the performance of linear MPC can 

significantly deteriorate (Bumroongsri and Kheawhom, 2012a; Yu, et al., 2012; Suzuki and 

Sugie, 2007). 

 

In order to deal with nonlinear chemical processes, nonlinear MPC was developed by 

Magni, et al. (2001). A full nonlinear model was used in MPC formulation. The complicated 

nonlinear control problem had to be solved at each sampling instant so the algorithm was 

computationally prohibitive in practical situations. 

 

The reformulation of nonlinear systems into linear parameter varying (LPV) systems is a 

promising technique to reduce the complexity of nonlinear systems. LPV systems are linear 

systems whose dynamics depend on time-varying parameters that can be measured on-line. 

Therefore, nonlinear systems can be reformulated as LPV systems without any loss of 

generality (Park and Jeong, 2004; Toth, 2010; Jungers, et al., 2011). Off-line MPC for LPV 

systems was previously developed by Bumroongsri and Kheawhom (2012b). Although the 

on-line computational time was significantly reduced, the stabilizable region of the algorithm 

was small because the ellipsoidal invariant sets were used in problem formulation. 

 

In order to enlarge the size of stabilizable region, an off-line formulation of robust MPC 

using polyhedral invariant sets was proposed by Bumroongsri and Kheawhom (2012c). The 

polyhedral invariant sets were used in the problem formulation so a significantly larger 

stabilizable region was obtained. Although the stabilizable region was enlarged, the 

conservativeness was obtained because the scheduling parameter was not incorporated into the 

controller design. 

 

In this research, an efficient formulation of off-line MPC using polyhedral invariant sets is 

presented. The sequences of explicit control laws corresponding to the sequences of polyhedral 

invariant sets are pre-computed off-line. At each sampling instant, the current state and the 

26 Pornchai Bumroongsri, Pornpun Arundechachai, and Soorathep Kheawhom 

 

 



scheduling parameter are measured. The real-time control law is then calculated by linear 

interpolation between the pre-computed control laws. The proposed algorithm can give a 

relatively large stabilizable region because the polyhedral invariant sets are computed in the 

off-line problem formulation. Moreover, the scheduling parameter is used in real-time 

interpolation between the pre-computed control laws so better control performance compared 

to an off-line robust MPC algorithm of Bumroongsri and Kheawhom (2012c) can be obtained. 

 
This article is organized as follows. In section 2, the problem description is presented. The 

proposed algorithm is presented in section 3. In section 4, the proposed algorithm is applied to a 

case study and the results are discussed. Finally, the paper is concluded in section 5. 

2. Problem Description 
The model considered here is the following linear parameter varying (LPV) systems (The 

techniques to transform nonlinear systems into LPV systems can be found in Toth (2010).) 

 

    )()())(()1( kBukxkpAkx +=+                              (1),  

 

     )()( kCxky =               (2), 

 
where )(kx  is a vector of states, )(ku  is a vector of control inputs and )(ky  is a vector 

of outputs. In this research, we assume that the scheduling parameters 

)](),...,(),([)( 21 kpkpkpkp L=  are measurable on-line at each sampling instant. Moreover, we 

assume that 

 
    },...,,{ ,))(( 21 LAAACoΩΩkpA =∈                       (3), 

 
where Ω  is the polytope, Co is the convex hull, jA  are the vertices of the convex hull 

and L  is the number of vertices of Ω . Any ))(( kpA  within Ω  is a linear combination of 

the vertices such that 

 

    1)(0 ,1)()())((
1

,
1

≤≤=∑∑=
==

kpkpAkpkpA j

L

j
jj

L

j
j       (4), 

*Corresponding author (P.Bumroongsri). Tel: +66-2-8892138 Ext.6101. E-mail address: 
pornchai.bum@mahidol.ac.th.  2014. International Transaction Journal of Engineering, 
Management, & Applied Sciences & Technologies.  Volume 5  No.1     ISSN 2228-9860   
eISSN 1906-9642.  Online available at http://tuengr.com/V05/0025.pdf . 

27 

 

 

mailto:pornchai.bum@mahidol.ac.th
http://tuengr.com/V05/0025.pdf


 

The objective is to find a state feedback control law that stabilizes LPV systems (1) and (2) 

subject to the following input and output constraints 

 
    ∞==≤+≤ ,...,2,1,0,....,2,1 ,)/(   ,max,min, inhukikuu uhhh     (5), 

 

    ∞==≤+≤ ,...,2,1,0  ,,....,2,1)/(  ,max,min, inrykikyy yrrr     (6), 

 
where un  is the number of control inputs, yn  is the number of outputs, minu  and maxu  

are the vectors of input constraints, miny  and maxy  are the vectors of output constraints. 

3. The Proposed Off-line MPC Algorithm 
In this section, an off-line MPC formulation for nonlinear systems is developed. The 

nonlinear systems are reformulated as LPV systems so their complexity is significantly 

reduced. Most of the solutions of the control problem are calculated off-line so the on-line 

computational time is significantly reduced.  

3.1 Off-line Procedures 

3.1.1 Off-line Step 1: Compute the Sequences of Off-line State Feedback Gains  

Choose a sequence of states { },...,N,ixi 21 , ∈  and solve the optimization problem 

presented by Bumroongsri and Kheawhom (2012b) off-line to obtain the sequences of state 

feedback gains L....,jN....,iK ji ,,21 ,,,21,, =∀=∀  where N  is the number of the chosen states 

and L  is the number of vertices of Ω . 

3.1.2 Off-line Step 2: Compute the Sequences of Polyhedral Invariant Sets 

Given the state feedback gains jiK ,  from 3.1.1. For each jiK , , the corresponding 

polyhedral invariant set { }jijiji dxMxS ,,, / ≤=  is computed by following these steps 

(1) Set TT
ji

T
ji

TT
ji KKCCM ] , , ,[ ,,, −−= , TTTTT

ji uuyyd ],,,[ minmaxminmax, =  and 1=m . 

(2) Select row m  from ),( ,, jiji dM  and check Lll ,...,1  , =∀  whether 

mjijillmji dxKBAM ,,,,, )( ≤+  is redundant with respect to ),( ,, jiji dM  by solving the 

following problem 
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    lmjiW ,,,  max                                                 (7), 

 

   s.t. mjijillmjilmji d)xKB(AMW ,,,,,,,, −+=                          (8), 

 
    jiji dxM ,, ≤                                                 (9), 

 
If 0,,, >lmjiW , the constraint mjijillmji dxKBAM ,,,,, )( ≤+  is non-redundant with respect to 

).,( ,, jiji dM Then, add non-redundant constraints to ),( ,, jiji dM  by assigning 

TT
jillmji

T
jiji KBAMMM ]))((,[ ,,,,, +=  and TT

mji
T

jiji ddd ],[ ,,,, = .  

 

(3) Let 1+= mm  and return to step (2). If m  is strictly larger than the number of rows in 
),( ,, jiji dM  then terminate. 

3.2 On-line Procedures 

At each sampling time, measure the current state )(kx  and the scheduling parameter 

)(kp . When jiSkx ,)( ∈ , jiSkx ,1)( +∉ , Lj ,...,2,1=∀ , Ni ≠ , the real-time state feedback gain 

∑∑
=

+
=

−+=
L

j
jij

L

j
jij KkpkKkpkkK

1
,1

1
, ))())((1())()(())(( ααα  can be calculated from )(kα  

obtained by solving the following optimization problem 

 
    )(  min kα                                                 (10), 

 
   s.t. maxmin )())(( ukxkKu ≤≤ α                                  (11), 

 
    LjSkxkBKkxkpA ji ,...,2,1,)())(()())(( , =∀∈+ α              (12), 

 
    1)(0 ≤< kα                                                (13), 

 
It is seen that the on-line optimization problem is only linear programming so it can be 

efficiently solved (Boyd and Vandenberghe, 2004). (11) is for guaranteeing input constraint 

satisfaction and (12) is for guaranteeing that the next predicted state still lies in the polyhedral 
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invariant sets computed off-line. 

4. Results and Discussion 
Consider the nonlinear two-tank system (Angeli, et al., 2000) which is described by the 

following equation 

    ughAhS +−= 111

.

1 2ρρ                                   (14), 

 

    22112

.

2 22 ghAghAhS ρρρ −=                           (15), 

 
where 1h  is the water level in tank 1, 2h  is the water level in tank 2 and u  is the inlet 

water flow. The schematic diagram of the nonlinear two-tank system is shown in Figure 1. 

 
Figure 1: The schematic diagram of the nonlinear two-tank system. 

 

The operating parameters of the nonlinear two-tank system are shown in Table 1. 

 
Table 1: The operating parameters of the nonlinear two-tank system. 

Parameter Value Unit 
1S  2,500 cm2 

2S  1,600 cm2 

1A  9 cm2 

2A  4 cm2 
g  980 cm/s2 

ρ  0.001 kg/cm3 

eqh ,1  14 cm 

eqh ,2  70 cm 
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Let eqhhh ,111 −= , eqhhh ,222 −=  and equuu −=  where subscript eq  is used to denote 

the corresponding variable at equilibrium condition, the objective is to regulate 2 h  to the 

origin by manipulating u . The input and output constraints are given as follows 

 

    5.1≤u  kg/s, 131 ≤h  cm, 502 ≤h  cm                  (16), 

 

By evaluating the Jacobian matrix of (14) and (15) along the vertices of the constraints set 

(16), we have that all the solutions of (14) and (15) are also the solutions of the following 

differential inclusion  
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where 4,...,1, =jAj  are given by 

 

  ,
22

02

min,2
2

min,1
1

min,1
1

1





















−

−

=

h
gA

h
gA

h
gA

A
ρρ

ρ
 





















−

−

=

min,2
2

max,1
1

max,1
1

2 22

02

h
gA

h
gA

h
gA

A
ρρ

ρ
     

  ,
22

02

max,2
2

min,1
1

min,1
1

3





















−

−

=

h
gA

h
gA

h
gA

A
ρρ

ρ
 





















−

−

=

max,2
2

max,1
1

max,1
1

4 22

02

h
gA

h
gA

h
gA

A
ρρ

ρ
(18), 

 

and 4,...,1, =jp j  are given by 
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The discrete-time model is obtained by discretization of (17) using Euler first-order 

approximation (Seborg, et al., 2004) with a sampling period of 0.5 s and it is omitted here for 

brevity. 

 

Figure 2 shows the polyhedral invariant sets computed off-line by the proposed algorithm. 

Figure 3 shows the polyhedral invariant sets computed off-line by an off-line robust MPC 

algorithm of Bumroongsri and Kheawhom (2012c). For both algorithms, the polyhedral 

invariant sets are computed by choosing the same sequence of states { }5,...,2,1, ∈ixi . Note that 

with the same number of chosen states, the proposed algorithm requires larger number of 

polyhedral invariant sets than an off-line robust MPC algorithm of Bumroongsri and 

Kheawhom (2012c). This is due to the fact that for the proposed algorithm, the number of 

sequences of polyhedral invariant sets computed is equal to the number of the vertices of the 

polytope Ω . In comparison, only a sequence of polyhedral invariant sets needs to be computed 

off-line for an off-line robust MPC algorithm of Bumroongsri and Kheawhom (2012c). 

 
(2.1) }521{,1, ,...,,iSi ∈  
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(2.2) }521{,2, ,...,,iSi ∈  

 
(2.3) }521{,3, ,...,,iSi ∈         

 
(2.4) }521{,4, ,...,,iSi ∈         

 Figure 2: The polyhedral invariant sets computed off-line by the proposed algorithm. 
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Figure 3: The polyhedral invariant sets computed off-line by an off-line robust MPC algorithm 

of Bumroongsri and Kheawhom (2012c). 
 

Figure 4 shows the regulated output. For the proposed algorithm, the scheduling parameter 

is measured on-line at each sampling time so less conservativeness compared to an off-line 

robust MPC algorithm of Bumroongsri and Kheawhom (2012c) can be obtained. It can be 

observed that the proposed algorithm requires less time to enter and remain within the settling 

band ( %1.0±  of mequilibriu2,h ) compared to an off-line robust MPC algorithm of Bumroongsri 

and Kheawhom (2012c).  

 

 
Figure 4: The regulated output. 

 

The control input is shown in Figure 5. For the proposed algorithm, the pre-computed state 
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feedback gains are interpolated on-line so a smoother input response is obtained. 

 

 
Figure 5: The control input. 

 

The overall computational burdens are shown in Table 2. Although the proposed algorithm 
requires larger off-line computational time than an off-line robust MPC algorithm of 
Bumroongsri and Kheawhom (2012c), the on-line computation is tractable because only linear 
programming needs to be solved on-line. All of the simulations have been performed in Intel 
Core i-5 (2.4GHz), 2 GB RAM, using SeDuMi (Sturm, 1999) and Yalmip (Löfberg, 2012) 
within Matlab 2008a environment. 

 
Table 2: The overall computational burdens. 

Algorithm Off-line CPU time (s) On-line CPU time (s) 
An off-line robust MPC algorithm 3.612 - 

The proposed algorithm 6.738 0.001 

5. Conclusion 
In this research, an efficient formulation of off-line MPC for nonlinear systems using 

polyhedral invariant sets has been developed.  The results show that the proposed algorithm 
can give better control performance than the previously developed off-line robust MPC 
algorithm. This is due to the fact the scheduling parameter is incorporated into the controller 
design.  The controller design is illustrated with an example of nonlinear two-tank system. 
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