

International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies

http://TuEngr.com

A Review of Resource-Constrained Project Scheduling Problems (RCPSP) Approaches and Solutions

Mohammad Abdolshah ^{a*}

^a Engineering Faculty, Islamic Azad University, Semnan Branch, Semnan, Iran

ARTICLEINFO	A B S T RA C T
ARTICLEINFO Article history: Received 17 June 2014 Received in revised form 08 July 2014 Accepted 10 July 2014 Available online 11 July 2014 Keywords: Exact salvation; Heuristics; Meta-heuristics; Deterministic.	A B S T RA C T Resource-constrained project scheduling problems are one of the most famous proposed problems in operational research and optimization topic. Using of discrete models by considering complexity of the problems requires designing efficient algorithms for solving them. On the other hand, this series of topics and generally project management are given attention in recent decades. Competition features of today's world, lead in time implementation of project with required quality to be important. Those factors lead to be given attention to resource-constrained project scheduling problems and their solutions theoretically and practically by academic researches and practitioners. The purpose of the paper is determining different methods and approaches that are used for solving the mentioned problems simultaneously or separately. The various described models in literature that consist of more than 200 published papers in most well-known journals, are collected and proposed in table format. In this research by studying these papers, in addition clarifying features of the developed models and the gaps, practitioners of projects implementation in various organizations can choose appropriate model for their projects by considering organizational conditions, types of resources and their organization's activities' technological specifications.
	© 2014 INT TRANS J ENG MANAG SCI TECH. (CC) BY

1. Introduction

Project planning is determination of time sequencing or scheduling plan for conducting a series of related activities that are constituents of project. In this case, Project disintegrate to some activity by methods like work breakdown structure (WBS). These activities are connected with each other because there are various logical relations between them. Logical and Immediate relations between each two activities are explained by controller like Finish to start (FS) relation,

start to start (SS) relation, finish to finish (FF) relation, and start to finish (SF) relation. Also, in more complicated projects it is possible to define more controllers like parallel implemented between two activities(Hadju, 1997In fact dependence of activities is based on their priority of implementation; it means it is possible that implementation of an activity depends on implementation of the others, this is called that project has priority constraints between activities. But in addition to these limitations, May bean other type of constraints, as resources constraints exist in project. So in project planning in addition to considering priority constraints, planning should be compatible with resources constraints. The objective of scheduling and sequencing activities is optimal allocation of limited resources over time. In fact scheduling is determination of activities which must be done in the specified time and sequencing, determine order of activities which must be done. Those project planning problems which do not have limitations of resources or consider them, are known as project scheduling problems without resourceconstrained and those problems which have resource-constrained and these limitations are considered in planning project, called resource-constrained project scheduling problems (RCPSP). This problem is one of the most complicated problems of operation research which has considerable progress in developing exact solution and innovative methods at recent decades and recently new optimization methods are used to solve it" (Mohring et al, 2003). For implementing each activity requires different resources such as time, capital, human power and etc. These resources are often divided into two categories: Renewable like human power and nonrenewable such as capital. Each activity can be implemented in several modes such as manually, semi-mechanized and mechanized. Implementation of each mood needs different type and amount of resources (Drexl et al, 1993). In resource-constrained project scheduling problems for implementing each activity like *i* needs r_{ik} unit of resource k = 1, ..., m, at per unit of activity's execution time (d_i) . Meanwhile k resource has b_k constraints per unit of time. The parameters (d_i) r_i , b_k) are non-negative and determined. This problem's objective often is determining start time and mode of implementation of each activity for minimizing the project's execution time. It is obvious that the problem solution must provide constraints that are related to activities' logical relations, and consider resource constraints too. There are two optimal and heuristics approach for solving the problem (Herroelen et al, 1998). The realistic solution instances of the problem because of complexity, extension and difficulty with optimal approaches like mathematical planning, dynamic planning or branch and bound, is impractical (Brucker et al, 1998).

2. Solving Methods

Before suing of computer in project scheduling problems, researches scheduled projects manually so it was too time consuming and was not a good guaranty for achieving an optimal result. In the last of 1950 decade, developing critical path techniques and evaluating and overlooking the project led that projects had capability to be described by network diagrams as

works and activities were defined by network structure. Nevertheless, within the techniques, only time was considered and limitation of using resources was not studied. Meanwhile project's constraint is one of the main problems of project planning in real world, during two recent decades types of project scheduling planning techniques under resource constrained conditions were proposed, implemented and controlled which generally are divided to exact and approximate methods. In fact it can be told that resource-constrained project scheduling problem has more than 40 years history. There are two approaches, optimal and heuristics, for solving the problem (Herroelen et al, 1998). Each of the methods has disadvantages and advantages. The exact methods have ability to obtain and guaranty optimal result. In these methods, all solving problem spaces are searched to find optimal answer from solving space. Although essential calculations for these methods are so many and as a results, they are so slow but guaranty the general optimization of problem, in fact the realistic solution instances of the problem because of complexity, extension and difficulty with optimal approaches like mathematical planning, dynamic planning or branch and bound, is impractical (Brucker et al, 1998). Of course the application of optimal approaches for solving smaller instances of the problem are reported in the literature. For instance, the paper refers interested reader to (Deckro et al, 1991) about mathematical planning, to (Icmeli et al, 1996. Carruthers et al, 1996) for numerical methods such as dynamic planning, to (Petrovic 1968, Demeulemeester 1998) about branch and bound methods. And for overcoming the computational problems of the methods, approximate methods are proposed. In these methods, Instead of the whole space of problem solution, a part of it is searched so they do not guaranty the optimal results and try to achieve a good approximate answer but they are quick methods and at the right time they achieve a good answer for huge problems. Many of the heuristics solving approaches for resource-constrained project scheduling problems are studied at 2006 (Kolisch et al, 2006). They categorized the approaches in 4 groups as (1) Priority rule- based approaches like Random sampling (Coelho et al, 2003); (2) Approaches based on meta-heuristics methods such as genetic algorithm (Alcaraz et al, 2003. Tareghian et al, 2007), tabu search algorithm (Nonobe et al, 2002), simulated annealing (SA) algorithm (Valls et al. 2004) ant systems (Merkle et al, 2002); (3) Non - Standard metaheuristics approaches like scatter search algorithm (Fleszar et al, 2004); and at last (4) approaches based on other heuristics methods such as forward and backward Improvement (FBI) (Tormos et al. 2003), Network analysis (Sprecher, 2002). This paper categorizes solving models that are discussed in past literature, as 3 diagrams

3. Exact solving methods

RCPSP are as general format of sequence of operations of NP hard problems type. The

optimal solutions, which are mentioned in literature, are: Zero-one mathematical planning and numerical implicit methods such as dynamic planning and branch and bound method. At recent decades, solving the problems is improved widely which are tested in two series problem. These series are: Series of 110 problems designed by Peterson and Series of 480 problems by Klisch. Algorithms are evaluated base on how many problems are solved by them at how much time. The series of Peterson problems include 110 problems instances that are designed by Peterson. Series of problems have 7 to 50 activities and 1 to 3 renewable resources. During last decades, this series was a criterion for evaluating validity and ability of optimal and close to optimal procedure. In 1995, Klisch questioned validity of Peterson's series that leads to develop ProGen. Network producer software that is able to produce RCPSP pattern with pre-determinate and 30 types of activity and 4 types of renewable resource, see Figure 1.

Figure 1: Exact solution categories

3.1 Heuristics solutions

A brief definition of a heuristics method is a technique that search close solutions to optimal with acceptable computational cost, but in fact unlike the exact solutions which guaranty finding the optimal answer if there are, they do not guaranty for achieving to an optimal result. Heuristics methods sometimes find the optimal answer and most of the time they reach to good answer. And these methods usually require less time and memory than exact solutions. The heuristics in scheduling often are defined as scheduling rules with dispatch rules. Often the rules are complex to be defined and for a specific type of the problem with a special series of restrictions and assumptions, are appropriate. The heuristics are used for searching combinational space of permutations in sequences of tasks or determining the conceivability of allocating resource, time and task during creation of scheduling or combining sequencing and scheduling. Heuristics scheduling are applied on series of tasks and determine at what time

which task must be done. If a task can be done in more than one implementation condition or on series of resources, heuristics determines which resource or implementation is used. The heuristics solutions are be used for major problems pattern.

Figure 2: Heuristics methods categories

3.2 Meta-heuristics Solutions

During last 20 years, a new type of estimated algorithm has been created which essentially tries to combine basis heuristics methods with an objective of efficient and effective search in search space in frameworks of upper level. The meta-heuristics methods are the last generations of heuristics algorithms and widely used for solving RCPSP too. In fact, the meta-heuristics are strategies in order to guiding search process. Participant techniques in meta-heuristics algorithms are in range of simple procedure, local search to complex learning processes.

3.2.1 Trajectory Methods

It works on single solutions and includes meta-heuristics based on local search. It means that algorithm start form primary condition (primary solution) and describes a trajectory in search space. Each movement is take place if the result solution is better actual one. Upon finding local minimal, the algorithms end such as Tabu search, iterated local search and variable neighborhood search. Their common features are describing a trajectory in search space during search process.

3.2.2 Population methods

They do search process which combine meta-heuristics evolution with exact methods or

other meta-heuristics, and combination of types of heuristics and meta heuristics in order to achieving optimal answers, can be observed in meta-heuristics methods, Figure 3.

Figure 3: Meta Heuristics methods categories

4. Approaches

Most of the studies in planning and project scheduling assume that there are complete information for solving scheduling problem which must be solve and the obtained basis scheduling plan will be implemented in a static environment too. Although there are many uncertainly in a relation with activities implementation that take place with implementation of project gradually which includes the following categories in diagram? In this section, there is review of basis approaches in project planning and scheduling at exact and unreliability conditions. It will be discussed about application potential of each of the methods in project uncertainly planning with definitive network structure. Figure 4 show types of RCPSP approaches.

4.1 Deterministic approach

In this approach, all problems' parameters are assumed definitive and determined and it has

rich position in RCPSP literature and is used for relaxation of the assumption in most of the papers. These kinds of papers because of simplifying real conditions have defects and practically, restrict efficiency of model in real projects.

Figure 5: FRCPSP categories.

4.2 Proactive (Robust) approach

Objective of the proactive scheduling is producing basis-scheduling stable so in order to be protected against interruptions during implementation of project. Temporary protections (Gao 1995)increase duration of activities based on unreliability of amount of resources, which are used for activities. Resources that have possibility of failure or violation are called probable to violation resources. Protected duration of the activity includes main duration added to waiting duration of violation. Then basic scheduling is provided by problem solution with protected durations.

4.3 Reactive approach

In Reactive scheduling, uncertainly are not given attention at creating basis scheduling but when uncertainly occur, the approach tries to answer, correcting and re-optimize the basis scheduling. Generally, the approach's main correction is on correcting and optimizing the basis scheduling if unanticipated events are occurred. The basis scheduling can be designed based on various strategies. On the other hand, answering to occurred changes can be based on very simple techniques such as Right shift rule (Sadeh et al. 1993) that they are influenced because of the defect in resources or precedence relations, transferred to the right which means their implementation time are postponed, it's obvious that the method is not a such good idea because it does not reschedule. The similar strategies are called schedule repair actions.

4.4 Fuzzy approach

Fans of activity ambiguous express the probability distribution function of activities leads to ambiguity and imprecise of estimation. The probability distribution function of an activity is ambiguous as long as information of its past, was not gained. A human expert should estimate the probability distribution function of an activity that often is non-recurring and exclusive.

4.5 Stochastic project approach

Objective of stochastic project scheduling with resource constrained, is project scheduling which is such that despite of activity duration uncertainly, precedence relations (Finish to start with zero lag) and renewable resource-constrained, minimizes make span. The studies on stochastic project scheduling are partly sporadic. Most of the studies are known as "stochastic project scheduling with resource-constrained" which are studied in next section.

5. Review of Solutions and Approaches of Resource-constrained Project Scheduling

In order to review researches procedure and researches' opportunities, all of the researches are studied as two perspectives " solution methods and approaches" in more than 200 papers of valid journals and after removing the similar articles, the chosen articles was studied and extracted their points and the results are shown by following tables. Tables 1 and 2 show the results of research about types of solution methods and approaches in RCPCP literature. There are brief explanations about important results of research in considerations column.

				Solu	tions		Specifications
	Authors	Year	Exact	No	t exact meth	od	
		method	Heuristics	Meta heuristics	Other		
1	.D.C. Paraskevopoul os et al.	2012		AILS, SAILS			Propos solution methodology, namely SAILS, operates on the event list and relies on a scatter search framework. The latter incorporates an Adaptive Iterated Local Search (AILS), as an improvement method, and integrates an event-list based solution combination method.
2	Chen Fang, Ling Wang	2012		SSGS	SFLA		Encode the virtual frog as the extended activity list (EAL) and decode it by the SFLA-specific serial schedule generation scheme (SSSGS) and To enhance the exploitation ability, a combined local search including permutation-based local search (PBLS) and forward–backward improvement (FBI) is performed.
3	Mohamed Haouari et al	2012	Dynamic programm ing, lower				Propose three classes of lower bounds that are based on the concept of Enhanced energetic reasoning

Table 1: RCPSP researches based on solution methods

			bounds			
4	Ling Wangn, ChenFang	2012		SSGS, MFBI, MPBLS	EDA	In the EDA the individuals are encoded based on the activity- mode list (AML) and decoded by the multi-mode serial schedule generation scheme (MSSGS), and a novel probability model and an updating mechanism are proposed for well sampling the promising searching region
5	Thomas S	2012	MILP			Present new mixed-integer linear programming models
5.	Kyriakidis et al.	2012	WILLI			riesent new mixed integer mear programming models
6.	KoorushZiarat i etal.	2011		SSGS	Bee algorithms	Proposed algorithms iteratively solve the RCPSP by utilizing intelligent behaviors of honeybees. Each algorithm has three main phases: initialization, update, and termination.
7.	Shu-Shun Liu& Chang- Jung Wang	2011	СР			A generic model is proposed to maximize the total profit of selected projects for construction and R&D departments given scheduling problems with various resource constraints during specified time intervals
8.	FilipDeblaere et al.	2011		Simulation -based Descent (SBD),		The procedure is basically a combination of four descent procedures that use simulation to evaluate the objective function
9.	SiamakBarada ran et al.	2011		SSGS	HMA	Presents a hybrid met heuristic algorithm based on scatter search and path linking algorithms to solve the stochastic MRCPSP
10.	Mohammad Ranjbar et al.	2011	Branch- and- bound algorithm			Present a branch-and-bound algorithm in which the branching scheme starts from a graph representing a set of conjunctions In the search tree; each node is branched to two child nodes based on the two opposite directions of each undirected arc of disjunctions.
11.	.R. Čapek et al	2011	Linear programm ing model	IRSA		A heuristic algorithm based on priority schedule construction with an un-scheduling step is proposed for the nested version of the problem and it is used to solve the case study of the wire harnesses production.
12.	MariemTrojet et al.	2011	СР			Provide a decision support framework under the constraints as a margin of cooperation/ negotiation with subcontractors
13.	Ling Wang, Chen Fang	2011		SSGS	Hybrid EDA (HEDA)	Individuals are encoded based on the extended active list (EAL) and decoded by serial schedule generation scheme (SGS), a Forward–Backward iteration (FBI) and a permutation based local search method (PBLS) are incorporated into the EDA based search to enhance the exploitation ability
14	José Coelho,	2011			A novel	The algorithm splits the problem into a mode assignment step
	Mario Vanhoucke				meta- heuristic	and a single mode project-scheduling step. The mode assignment step is solved using a fast and efficient SAT solver
15.	Ruey-Maw Chen	2011		SSGS	JPSO	The justification technique is combined with PSO as the proposed justification particle swarm optimization (JPSO), which includes other designed mechanisms.
16.	Shanshan Wu et al.	2011		SSGS	CBIIA	The proposed CBIIA is based on the traits of an artificial immune system, chaotic generator and parallel mutation
17.	Mahdi Mobini et al.	2011		SSGS	AIA	The proposed algorithm benefits from local search mechanisms as well as mechanism that enhances the diversity of the search directions
18.	OumarKone et al.	2011	MILP			Make a comparative study of several-mixed integer linear programming (MILP) formulations for resource-constrained project scheduling problems (RCPSPs).
19	LucioBianco& Massimiliano Caramia	2011	Lower bound			The lower bound is based on a relaxation of the resource constraints among independent activities and on a solution of the relaxed problem suitably represented by means of an AON acyclic network.
20	Agustín Barrios et al.	2011		DGA		The heuristic is a two-phased genetic algorithm with different representation, fitness, crossover operator, etc., in each of them.
21	AnuragAgarw	2011				Neurogene A new hybrid of a neural network approach and the genetic

	al et al.					tic	algorithms approach
22	Eronoisoo	2011		SECE	SDE A 2	approach	Extensive computational regults halp deside which algorithms
22	Ballestiín.	2011		3505	NSGA2		or techniques are the most promising for the problem.
	RosaBlanco				and PSA		
23	FilipDeblaere	2011	Branch-	IDA	TS		Propose and evaluate a number of dedicated exact reactive
	et al.		and-				scheduling procedures as well as a TABU search heuristic for
24	TarunBhaskar	2011	bound	SPI			Propose a non-recursive heuristic method based on priority
	et al.	-					rule for a new scheduling scheme and call it priority rule as
				Dagag			Schedule Performance Index
25	Grzegorz Wali	2011		DCSGS	Heuristic		Different approaches to solving the continuous part of the problem were presented an exact approach requiring solving a
	goia				11000-15		convex mathematical programming problem, a heuristic
							approach to the continuous resource allocation problem
							(heuristic HUDD-PS), and the approach based on the
26	José Fernando	2011		FBL	Genetic		Active schedules are constructed using a priority-rule
	Gonçalves et			SSGS	algorithm		heuristic in which the priorities of the activities are defined by
	al.						the genetic algorithm. A forward-backward improvement
27	Vincent Van	2011		SSGS	Scatter		Combination of improvement methods and the introduction of
21	Peteghem,	2011		5565	search		two local searches into one overall solution procedure leads to
	Mario				algorithm		promising computational results
28	Vanhoucke Reza Zamani	2011		SSGS	A hybrid		The procedure finds an initial schedule for the project, and
20	.iteza Zainain	2011		5565	decomposi		refines it through a decomposition process, To achieve further
					tion		reduction, the refined schedule is over-refined by a genetic
20	Olivier	2011		Time	procedure		algorithm
29	Lambrechts et	2011		buffering			surrogate objective function or using the STC heuristic
	al.			using the			
30	Rehzad A shtia	2011		STC			A two-phase local-search procedure is developed to produce
50	ni et al.	2011		local-			high-quality pre-processor policies for SRCPSP instance, first
				search			phase is devoted to finding good priority lists
31	Francisco Ballestín et al	2011		SSGS,			Works on a population consisting of several distance-order-
	Danestin et al.			ry			schedules. The algorithm uses the conglomerate-based
				algorithm	~ .		crossover operator
32	Jie Zhu et al.	2011			Genetic		During the genetic process of the proposed GA, an offspring
					aigoritiini		from parent chromosomes
33	Mohammad	2011		SSGS		Potts-	A Potts mean field feedback artificial neural network is
	Jaberi					MFA	designed and integrated into the scheduling scheme so as to
							project scheduling
34	Hong	2010			PSO	FLC	Present a fuzzy-multi-objective particle swarm optimization
	Zhang,Feng Ving						to solve the fuzzy TCQT problem. The time, cost and quality
	Allig						utility methodology incorporated with constrained fuzzy
							arithmetic operations is adopted to evaluate the selected
25	E Klaridaa E	2010		Two store			construction methods Propose a path-based two stage stochastic integer
55	Hadjiconstanti	2010		stochastic			programming approach in which the execution modes are
	nou			integer			determined in the first stage while the second stage performs
				programm			activity scheduling according to the realizations of activity
36	.Qi Hao et al.	2010		A			A dynamic algorithm based on partial task networks practical
				dynamic			heuristics for conflict detection, project prioritization and
27	Svio B	2010		algorithm			conflict resolution The new algorithm consists of a hybrid method where on
51	Rodrigues,	2010		algorithm			initial feasible solution is found heuristically
	Denise S.			-			
38	Y amashita Sonda	2010			A hybrid		Introduce clustering algorithms to compute densities. In this
50	Elloumi,	2010			rank-based		way enforce that neighbor solutions belong to the same
	Philippe				evolutiona		cluster and are assigned the same density.

	Fortemps				ry algorithm		
39.	AnisKooli et al.	2010	Integer programm ing		<u>uigerium</u>		New feasibility tests for the energetic reasoning are introduced based on new integer programming (IP) formulations.
40.	Jairo R. Montoya- Torres et al.	2010		SSGS, PSGS	genetic algorithm		Propose an alternative representation of the chromosomes using a multi-array object-oriented model in order to take advantage of programming features in most common languages for the design of decision support systems
41.	SiamakBarada ran et al.	2010		SSGS, PSGS	A hybrid scatter search		The path re-linking algorithm and two operators like crossover and prominent permutation-based are applied to solve the problem
42.	Moslem Shahsavar et al.	2010			Genetic algorithm		Genetic algorithm (GA) is designed using a new three-stage process that utilizes design of experiments and response surface methodology.
43.	C.U. Fündeling, N. Trautmann	2010		A novel method of SGS			Present a priority-rule method based on a novel schedule- generation scheme and a consistency test for efficient scheduling of individual activities that iteratively determines a feasible resource-usage profile for each activity
44.	Ruey-Maw Chen et al.	2010			A novel PSO		The delay local search enables some activities delayed and altering the decided start processing time. The bidirectional scheduling rule which combines forward and backward scheduling to expand the searching area in the solution space for obtaining potential optimal solution.
45.	Wang Chen et al.	2010		SSGS	ACOSS		Algorithm combines a local search strategy, ant colony optimization (ACO), and a scatter search (SS) in an iterative process
46.	Vincent Van Peteghem, Mario Vanhoucke	2010		SSGS	GA		Apply a bi-population genetic algorithm, which makes use of two separate populations and extend the serial schedule generation scheme by introducing a mode improvement procedure.
47.	E. Klerides, E. Hadjiconstanti nou	2010	Integer programm ing				Propose a path-based two-stage stochastic integer programming approach in which the execution modes are determined in the first stage while the second stage performs activity scheduling according to the realizations of activity durations
48.	Andrei Horbach	2010	Lower bounds				Solver is lightweight and shows good performance both in finding feasible solutions and in proving lower bounds
49.	Angela H. L. Chen, Chiuh- Cheng Chyu	2010	Branch- and- bound		The two- phase hybrid metaheuris tic		Using a branch-and-bound algorithm to solve the mode assignment problem in the first phase; then, by transforming a multi-mode case into a single-mode problem, the second phase was activated and the memetic algorithm was applied to achieve good quality solutions
50.	WANG Hong et al.	2010		SSGS, PSGS, FBI	GA		Algorithm employs a standardized random key (SRK) vector representation with an additional gene that determines whether the serial or parallel schedule generation scheme (SGS) is to be used as the decoding procedure. The iterative forward-backward improvement as the local search procedure is applied upon all generated solutions
51.	Reza Zamani	2010		Parallel complete anytime procedure			Procedure finds a sequence of solutions in which every solution improves the previous one. To accelerate the convergence of the sequence to the optimal solution, the procedure simultaneously works in the forward and backward directions
52.	JiupingXu&Z he Zhang	2010			Hybrid genetic algorithm	FLC	Choose the hybrid genetic algorithm (HGA), and apply fuzzy logic control (FLC) to hybrid genetic algorithm (FLC-HGA) for enhancing the optimization quality and stability
53.	Isabel Correia et al.	2010		Upper bound			A mixed-integer linear programming formulation, proposes a two-phase heuristic procedure for obtaining such bound. In the first phase, a feasible schedule is constructed. In the second phase, an attempt is made to improve this schedule by means of a local search procedure.
54.	Wang Xianggang1 & Huang Wei	2010				Hybrid intelligent algorithm	Hybrid intelligent algorithm integrated by genetic algorithm and fuzzy simulation is designed to solve the above two fuzzy programming models.

55	.H. R. Yoosefzadeh et al.	2010	PSGS	Priority Rules		Compared the performance of forward, backward, bidirectional and tri-directional planning schemes in the context of different priority rules, The result obtained by each combination is an upper bound (UB) on the optimal project duration
56	Angelo Oddi et al.	2010			Different flattening algorithms within the ifs meta- heuristic strategy	Iterative flattening search (ifs) is a meta-heuristic strategy for solving multi-capacity scheduling problems. Given an initial solution, ifs iteratively applies: a relaxation-step, and a flattening-step
57	.Doreen Krüger& Armin Scholl	2010		Mixed- integer model		At first develop a framework for considering resource transfers in single- and multi-project environments. Afterwards, define the multi-project scheduling problem with transfer times (RCMPPTT) and formulate it in a basic and an extended version as integer linear programs Eventually, it is supplemented for the first time by cost considerations
58	YuryNikulin& Andreas Drexl	2010			Pareto Simulated Annealing	A multi-criteria meta-heuristic, in order to get a representative approximation of the Pareto front
59	Tyson R. Browning &Ali A. Yassine	2010			A random generator	Present the first multi-network problem generator, The generator produces "near-strongly random" networks quickly, and can produce increasingly more strongly random networks at greater computational expense. Then identify a tradeoff between the degree of randomness and computational time
60	.Fawaz S. Al- Anzi et al.	2010		Lower bound		A lower bound that uses a linear programming scheme for the RCPSP.
61	.M. Ranjbar& F. Kianfar	2010		SSGS, a local search	GA	Developed a linear model for the problem, an enumeration procedure for generation of feasible work problems and a meta-heuristic, based on the Genetic Algorithm (GA), for solving the problem. Also developed a local search incorporated with GA to improve the solutions' quality
62	.N. Damak et al.	2009			Differentia l evolution (DE) algorithm.	Focus on the performance of this algorithm to solve the problem within small time per activity.
63	.PengWuliang, Wang Chengen	2009			Improved genetic algorithm	According to the characteristics of the proposed problem, an improved genetic algorithm was presented
64	.Liang Yan et al.	2009		New heuristic approach		Combining the RCPSP model with the five heuristic, By comparing with those generated by the manual decision- making method, the results generated by heuristic algorithm indicate high efficiency
65	Po-Han Chen, Seyed Mohsen Shahandashti	2009			Hybrid of GA-SA	First attempts to use meta-heuristics and non-traditional techniques, can be seen that GASA Hybrid has better performance than GA, SA, MSA, and some most popular heuristic methods
66	.Po-Han Chen,HaijieW eng	2009			Two- phase GA (genetic algorithm)	The developed two-phase GA model works well. With further development to allow for multiple resource types, the two phase GA model could be generalized and applied to all sorts of resource-constrained project scheduling problems, including interruption and overlap of activities
67	.VikramTiwari et al.	2009	IP			Formulate the problem with a rework, quality-enhancing component and solve the resulting problem using commercial optimization procedures.
68	Jiaqiong Chen, Ronald G. Askin	2009	MIP			Two versions of the Mixed Integer Program (MIP)
69	.Mohammad Ranjbar et al.	2009		SSGS	A hybrid scatter search	Using path re-linking methodology as a solution combination method.
70	Antonio Lova et al.	2009		S SGS, PSGS	a hybrid Genetic Algorithm (MM- HGA)	A new parameter has been designed and its efficiency stated. In the evolution process characteristic of the GAs, fitness function plays a crucial role

71	J.J.M. Mendes	2009		A random	The schedule is constructed using a heuristic priority rule in
	et al.			key based	which the priorities of the activities are defined by the genetic
				genetic	algorithm.
				algorithm	
72	Kuo-Ching	2009		A hybrid-	To evaluate the effectiveness of the proposed scheme.
	Ying et al.			directional	different planning directions are incorporated into some meta-
	8			planning	heuristics, including GA, SA, and TS
				scheme	
73	WU Yu et al	2009		Timed	Firstly a novel mapping mechanism between traditional
				colored	network diagram such as CPM (critical path method)/PERT
				Petri net	(program evaluation and review technique) and TCPN was
				(TCPN)	presented
74	lörgHomberge	2011	CMAS	(1011)	Multiple solutions consists of several self-interested schedule
<i>'</i> '	r	2011	0.00110		agents each of which plans a single project decent rally and
	1				autonomously
75	C C C hyu &	2009	Several		Developed by using insertion move and two swap to generate
15	7 I Chen	2007	variable		various neighborhood structures and making use of the well-
	L.J. Chen		neighborh		known backward_forward scheduling a proposed future
			ood search		profit priority rule, or a short term VNS as the local
			(VNS)algo		refinement scheme (D ₋ VNS)
			(VINS)algo		Termement scheme (D-VINS).
76	M D Mahdi	2000	Sec.e	Enhanced	Decode to the solutions using both sorial and parallel SCS
/0	Mobini et al	2009	DECE	souttor	and serial SGS was used during the iterations of the
	Moonn et al.		1505	scatter	and serial-SOS was used during the herations of the
				search	algorithm. In the proposed ESS, three operators were used to
					generate new solutions from existing solutions in the
77	Christian	2000		A	A a basis seemb from source For an insertion and the sheeds
//	Christian	2009		A new	As a basic search framework for reinsertion neighborhoods
	Artigues&			polynomia	
70	Cyrll Briand	2000	CD	1 algorithm	
/8	Shu-Shun	2008	СР		Presented model, constructed by Constraint Programming
	Liu,Chang-				(CP), considers resource usage and cash flow in project
70	Jung Wang	2000			scheduling to fulfill management requirements.
/9	Nai-Hsin Pan	2008		An	Develop an improved 18 model by modifying the way of
	et al.			improved	finding a starting solution instead of traditional 1S algorithm,
	a.:	•	2000	18 model	minimum moment algorithm (MMA)
80	Stijn Van de	2008	PSGS,		Multiple efficient heuristic and meta-heuristic procedures are
	Vonder et al.		KFDFF,		proposed to allocate buffers throughout the schedule
			VADE,		
0.1	F .	2000	SIC		
81	Francisco	2008	SSGS,		show how three basic elements of many heuristics for the
	Ballesti'n et		DJGA,		RCPSP – codification, serial SGS and double justification –
	al.		I_DJGA		can be adapted to deal with interruption
82	.R. Alvarez-	2008	Several		Procedures. Heuristic algorithms based on GRASP and Path
	Valdes et al.		heuristic		re-linking are then developed and tested on existing test
-			algorithms		Instances
83	J.F. Gonçalves	2008	SSGS	GA	Schedules are constructed using a heuristic that builds
	et al.				parameterized active schedules based on priorities, delay
					times, and release dates defined by the genetic algorithm
84	.Hédi	2008	Two-		The first stage solves the RCPSP for minimizing the
	Chtourou&		stage-		makespan only using a priority-rule-based heuristic, namely
1	Mohamed		priority-		an enhanced multi-pass random-biased serial schedule
	Haouari		rule-based		generation scheme. Then similarly solved for maximizing the
1					schedule robustness while considering the makespan obtained
					in the first stage as an acceptance threshold.
85	.Haitao Li,	2008	Constraint		A constraint programming (CP) based solution approach is
1	Keith Womer		programm		proposed and implemented in one case study
			ing		
86	.LuongDuc	2008		Developed	The proposed method is useful for both project planning and
1	Long,			a	execution which is well known priority heuristic rules and
1	ArioOhsato			procedure	standard genetic algorithm
				(named	
1				P1)	
87	Mohammad	2008	a new		Proposes a new heuristic algorithm for this problem based on
1	Ranjbar		heuristic		filter-and-fan method incorporated with a local search.
1	-		algorithm		exploring in the defined neighborhood space

88.	Marek Mika et	2008		SSGS	TS		An application of a local search meta-heuristic TABU search for the considered problem has been described
89.	Mario Vanhoucke	2008	Branch- and- bound				First aim at the constitution of efficient meta-heuristic solution procedures to solve the PRCPSP-FT and the PDTRTP-FT where set-up times are incorporated between pre-emptive sub-activities, Second try to extend this approach to a flexible activity assumptions problem setting
90.	Shih-Tang Lo et al.	2008			ant colony optimizati on (ACO)		Present a modified ACO approach named DDACS for a multi-constraint multiprocessor scheduling problem The proposed DDACS algorithm modifies the latest starting time of each job in the dynamic rule for each iteration
91.	Vicente Valls et al.	2008		SSGS	Hybrid Genetic Algorithm (HGA)		HGA introduces several changes in the GA paradigm: a crossover operator specific for the RCPSP; a local improvement operator that is applied to all generated schedules a new way to select the parents to be combined; and a two-phase strategy by which the second phase re-starts the evolution from a neighbor's population of the best schedule found in the first phase.
92.	LE. Drezet, J.C. Billaut	2008	MILP formulatio n	Two- phase heuristic algorithm			The first phase is a greedy algorithm, whose solution is used in the second phase as an initial solution for a TABU search algorithm
93.	Mario Vanhoucke, Dieter Debels	2008	Branch- and- bound				Present adapted lower bound and upper bound calculations for the PDTRTP-FT.
94.	B. Jarboui et al.	2008			Combinat orial PSO (CPSO) algorithm		CPSO algorithm outperforms the simulated annealing algorithm and it is close to the PSO algorithm. Also used a local search method to optimize the sequence associated to each assignment.
95.	Sanjay Kumar Shukla et al.	2008		SSGS	Adaptive sample- sort simulated annealing	FLC	Propose a parallel intelligent search technique named the fuzzy based adaptive sample-sort simulated annealing (FASSA) heuristic. The basic ingredients of the proposed heuristic are the serial schedule generation scheme (SGS), sample sort simulated annealing (SSA), and the fuzzy logic controller (FLC).
96.	Olivier Lambrechts et al.	2008		SSGS	Time slack- based techniques , TS		Develop an approach for inserting explicit idle time into the project schedule in order to protect it as well as possible from disruptions caused by resource un-availabilities.
97.	Olivier Liess& Philippe Michelon	2008		Constraint programm ing			Classical Constraint Programming approach for the (RCPSP) except that the timetable algorithm is not considered.
98.	A. A. Lazarev& E. R. Gafarov	2008	Branch- and- bound				Prove that method like branch-and-bound (branch & bounds, Constraint Programming, and so on) with the lower estimate LBM be ineffective.
99.	MajidSabzehp arvar& S. Mohammad Seyed- Hosseini	2008	Linear mixed integer programm ing				Time horizon can be continuous in this model thus dealing with different processing time units
100.	Jean Damay et al.	2007	Linear programm ing				A time-indexed linear formulation of the non-preemptive version of the RCPSP involving these feasible subsets
101.	ShahramShadr okh, FereydoonKia nfar	2007			GA		690 problems are solved and their optimal solutions are used for the performance tests of the genetic algorithm
102.	Mohammad R. Ranjbar, FereydoonKia nfar	2007	SSGS		Ameta- heuristic algorithm		Based on the genetic algorithm and a new method based on the resource utilization ratio is developed for generation of crossover points and also a local search method is incorporated with the algorithm
103.	JirachaiBuddh akulsomsi, David S. Kim	2007		SSGS, Priority rule-based			Both deterministic multi-pass and stochastic multi-pass heuristics have been constructed
104.	Stijn Van de Vonder et al.	2007		SSGS, PSGS, weighted-			Present a sampling procedure that combines the schemes with multiple priority lists. Also describe a heuristic for the weighted earliness-tardiness problem

				earliness tardiness heuristic			
105	Jacques Carlier& Emmanuel Néron	2007			Enumerati on algorithm		Propose an explicit enumeration of the redundant resources and a characterization of the non-dominated ones
106	M. Rabbani et al.	2007		A new heuristic algorithm			In order to prevent creating a lower bound for the mean project completion time, the most critical chain is determined and its standard deviation is added to project completion time as the project buffer
107	VéroniqueBou ffard& Jacques A. Ferland	2007			Improving simulated annealing with variable neighborh ood search		Consistent with the fact that the simulated annealing approach performs better than the TABU search approach for RCPSP Furthermore, the performance of the simulated annealing method can be improved with a variable neighborhood search approach
108	RinaAgarwal et al.	2007				Artificial immune system	The performance of the proposed AIS algorithm on test problem, reported in literature is found to be superior, when compared with GA, fuzzy-GA, LFT, GRU, SIO, MINSLK, RSM, RAN, and MJP
109	Lin-Yu Tseng, Shih-Chieh Chen	2006			A hybrid meta heuristic ANGEL		ANGEL combines ant colony optimization (ACO), genetic algorithm (GA) and local search strategy. Also proposes an efficient local search procedure that is applied to yield a better solution when ACO or GA obtains a solution. A final search is applied upon the termination of ACO and GA
110	Amir Azaron, Reza Tavakkoli- Moghaddam	2006	Non- linear programm ing				The dynamic PERT network, representing as a network of queues, was transformed into an equivalent classical PERT network
111	Luciano LessaLorenzo ni et al.	2006		An evolutiona ry algorithm			An algorithm based on differential evolution algorithm was selected to serve as a solution procedure.
112	Dieter Debels et al.	2006		SSGS	A new meta- heuristic(E M)		The procedure is a population-based evolutionary method that combines elements from scatter search, a generic population- based evolutionary search method, and from a recently introduced heuristic method for the optimization of unconstrained continuous functions based on an analogy with electromagnetism theory
113	Hong Zhang et al.	2006		PSGS	Particle swarm optimizati on (PSO)		A PSO-based method including its corresponding framework is proposed for solving the RCPSB
114	John-Paris Pantouvakis, Odysseus G. Manoliadis	2006		a heuristic method			A heuristic method is developed based on traditional CPM scheduling Calculations and leveling algorithms
115 116	Guidong Zhu et al. I-Tung Yang, Chi-Yi Chang	2006 2005	A branch and cut Linear programm				Based on the integer linear programming (ILP) formulation of the problem Present a chance-constrained programming model, derive its deterministic equivalent, and solve the equivalent by classical
117	Marek Mika et al.	2005	ing	SSGS	Simulated annealing and TABU search		linear programming techniques., Model verification is performed by Monte Carlo simulations Applications of two local search meta-heuristics
118	M.A. Al- Fawzan, Mohamed Haouari	2005		SSGS	TABU search algorithm		Develop a TABU search algorithm in order to generate an approximate set of efficient solutions
119	KwanWoo Kim	2005		SSGS	Hybrid genetic	FLC	The proposed new approach is based on the design of genetic operators with fuzzy logic controller (FLC) through

					algorithm with fuzzy logic controller (FLC- HGA)	initializing the revised serial method which outperforms the non-preemptive scheduling with precedence and resources constraints
120.	Tamás Kis	2005	a branch- and-cut algorithm			Formalize the problem by means of a mixed integer-linear program, prove that feasible solution existence is NP- complete in the strong sense and propose a branch-and-cut algorithm for finding optimal solutions
121.	Sophie Demassey& Chiristian Artigues	2005	Lower bound, linear programm ing	A heuristic method		Propose a cooperation method between constraint programming and integer programming to compute lower bounds for the RCPSP.
122.	Krzysztof Fleszar, Khalil S. Hindi	2004		SSGS, variable neighborh ood search(VN S)		In addition to the use of VNS to explore the solution space, the effectiveness of the scheme is due to progressively reducing the solution space by repeatedly improving both lower and upper bounds, as well as by discovering additional valid precedence to augment the existing set.
123.	Juite Wang	2004		SSGS	Genetic algorithm	Adapt a Branch-and-Bound algorithm for resource- constrained project scheduling by Bell and Park (1990) to the fuzzy case. And propose GA approach can obtain the robust schedule with acceptable performance
124.	I.E. Diakoulakis et al.	2004			Evolution Strategies (ES)	Under two discrete solution encodings; one works on vectors of priority values and the other is based on convex combinations of priority rules
125.	Reza Zamani	2004	Time window		SA	Procedure consists of a SA component and a time-windowing process. The SA component generates a base schedule and the time-windowing process improves the base. The combination of three factors contributes to the efficiency of the simulated annealing component
126.	ChristophMell entien	2004		A relaxation- based beam- search solution		Present a relaxation-based beam-search solution heuristic. Exploiting a duality relationship between temporal scheduling and min-cost network flow problems solves the relaxations.
127.	Vicente Valls & Francisco Ballestín	2004	SSGS, PSGS	Convex Search, Homogene ous Interval Algorithm (back ward, forward)	Scatter search	Procedure incorporates various strategies for generating and evolving a population of schedules. It is the result of combining four innovative basic procedures
128.	Philippe Baptiste & Sophie Demassey	2004		Tight LP bounds		14 more lower bounds are improved in an average CPU time of 284.6 seconds
129.	Mireille Palpant et al.	2004		SSGS	LSSPER	Present the Local Search with Sub-Problem Exact Resolution (LSSPER) method based on large neighborhood search for solving the problem
130	A. LIM et al.	2004		DSCS -	A hybrid framework	This hybrid framework has a two-level structure. TS and GA heuristic searches were used in the high level components of algorithms. For the low level components, a CP-based iterative randomized method and a Minimal Critical Set- based method were used to resolve temporal and resource conflicts. The four combinations of these – Tabu_CP, Tabu_MCS, GA_CP, GA_MCS – were tested on two sets of real test data
131.	Artigues et al.	2003		new		rescheduling in a dynamic environment

				polynomia l insertion algorithm			
132	Vicente Valls et al.	2003		SSGS	A new meta heuristic algorithm CARA,		Non-standard implementation of fundamental concepts of TABU search without explicitly using memory structures embedded in a population-based framework, makes use of the TO representation of schedules
133	J. Carlier& E. Néron	2003	Linear lower bounds (LLB)				First application that we present is a general linear programming scheme for computing a makespan lower bound. The second application consists in associating redundant resources with LLB
134	DimitriGolenk o-Ginzburg et al.	2003		RCGPS algorithm			Algorithm can be used for CAAN models which cover a broad spectrum of alternative stochastic networks
135	Roland Heilmann	2003	Branch- and- bound				The solution method is a depth-first search based branch-and- bound procedure. It makes use of a branching strategy where the branching rule is selected dynamically. The solution approach is an integration approach where the modes and start times are determined simultaneously.
136	Kwan Woo Kim et al.	2003		SSGS	Hybrid genetic algorithm (HGA) with fuzzy logic controller (FLC)	FLC	Based on the design of genetic operators with FLC and the initialization with the serial method, to find optimal or near- optimal initial solutions which has been shown superior for large-scale RCPSP
137	M Kamrul Ahsan& De- Bi Tsao	2003		bi-criteria search strategy of a heuristic learning			Formulate a state-space representation of a heuristic search algorithm with a bi-criteria partial schedule selection technique. The heuristic solves problems in two phases. Also propose a variable weighting technique based on initial problem complexity measures
138	J Alcaraz et al.	2003			GA		Before the genetic algorithm itself is started, apply a preprocessing procedure over the project data, in order to reduce the search space.(to reduce the volume of the data and speed up the execution of their algorithm for this problem.)
139	Chiu-Chi Wei et al.	2002		Enhanced TOC method			The enhanced TOC project scheduling technique determines the lower bound of the project length by using the combination of the existing heuristic algorithms, used to conduct the activity duration cut and establish project buffer, feeding buffer and resource buffer
140	AmedeoCesta & Angelo Oddi	2002		A heuristic algorithm(ISES)			Use of an iterative sampling procedure which relies, on a constraint satisfaction problem solving (CSP) search procedure
141	A Sprecher	2002		a new heuristic			The strategy combines elements of exact and heuristic solution procedures. It relies on decomposition of a problem into sub-problems, near optimal solution of the sub-problems, and concatenation of the sub-problem solutions. The algorithm significantly outperforms the truncated exact branch-and bound algorithm on larger instances.
142	Mario Vanhouck et al.	2001	Branch- and- bound				Introduce a depth-first branch-and-bound algorithm which makes use of extra precedence relations to resolve resource conflicts and relies on a fast recursive search algorithm for the unconstrained weighted earliness–tardiness problem to compute lower bounds
143	.Birger Franck et al.	2001	Branch- and- bound	SSGS, heuristic procedures			Propose several truncated branch-and-bound techniques, priority-rule methods, and schedule-improvement procedures of types TABU search and genetic algorithm
144	.GunduzUluso y et al.	2001			Genetic algorithm		Use a special crossover operator that can exploit the multi- component nature of the problem.
145	Sönke	2001		SSGS	Genetic		Extending the genetic algorithm framework by local search

	Hartmann				Algorithm		concepts used two local search methods. One was designed to
							deal with the feasibility problem of the MRCPSP, while the other was used to improve the schedules found by the GA
146	.A. Kimms	2001	Tight	Lagrangia			Derive tight upper bounds on the basis of a Lagrangian
			Upper	n			relaxation of the resource constraints And also use this
1.47		2001	Bounds	relaxation	<u> </u>		approach as a basis for a heuristic
147	J. Prashant Reddy et al.	2001			algorithm		algorithm-based search and heuristics
148	Antonio	2001		SSGS,	Ŭ		Analyze the effect of the schedule generation schemes - serial
	Lova&PilarTo			PSGS,			or parallel and priority rules. Also New heuristics -based on
	rmos			New heuristics			priority rules with a two-phase approach
149	Joanna	2001		SSGS	A new		Two versions of the simulated annealing approach are
	Jozefowska et				simulated		discussed: SA without penalty function and SA with penalty
	al.				annealing		function
150	DilarTormos &	2001		SECE	algorithm		Technique is a hybrid multi pass method that combines
150	Antonio Lova	2001		PSGS			random sampling procedures with a backward-forward also
	7 momo Lova			hvbrid			the algorithm includes as a determinant characteristic the
				multi-pass			alternative use of the serial and parallel schedule generation
				method			schemes in such a way that it benefits from the properties
							provided for both of them.
151	Roland	2001		Multi-			The heuristic is a multi-pass priority-rule method with back
	Heilmann			pass			planning which is based on an integration approach and
				priority-			embedded in random sampling
				method			
152	Gary Knotts et	2000		Eight			Develop and experimentally evaluate eight agent-based
	al.	2000		agent-			algorithms, algorithms differ in the priority rules used to
				based			control agent access to resources
				algorithms			
153	.ChristophSch	2000	Branch-				Solve to feasibility by a simple batching heuristic and the
	windt &		and-				subsequent solution of the corresponding batch scheduling
	Norbert		bound				problem by a truncated version of the branch–and–bound
154	I rautmann	2000	Dranah				algorithm within one minute
134	Demeulemeest	2000	and-				discrete time/resource trade-off problem in project networks
	er et al.		bound				(DTRTP)
			algorithm				()
155	.Ulrich	2000	Time-				Describe a time-oriented branch and bound algorithm that
	Dorndrof et al.		oriented				uses constraint propagation techniques
			branch-				
			and-				
156	Arno Sprachar	2000	Dound				The main nurness of this negative direct focus to a branch
130	Ano Spiecher	2000	and-				and bound concept
			bound				
157	.Tam P. W. M.	1999		A new			Note first outlines the suitability of ranked positional weight
	& E.			heuristic			method (RPWM), a heuristic resource scheduling method, to
	Palaneeswaran			method			construction project scheduling. It then focuses on a new
							heuristic technique, the enhanced positional weight (EPWM),
							interacting comparisons between the results given by
1							Primavera Microsoft Project RPWM and FPWM are also
1							presented
158	Shue Li-	1999				An	Present an admissible heuristic search algorithm SLA, and an
1	Yen,RezaZam					intelligent	implementation method for solving the RCPSP, this
	ani					search	algorithm is characterized by the complete heuristic learning
1						method	process: state selection, heuristic learning, and search path
150	Doul D	1000			Tab		review
139	Thomas	1998			1 abu Search		order to construct a method for this combinatorial problem
1	&Said Salhi				Approach		namely the PSTSM heuristic
					PSTSM)		
160	Abel	1998			Alternativ		Introduces a multi-period stochasticing programming based
	A.Fernandez				e		model of the project scheduling problem
1		1			simulation		

					algorithm		
161	Aristide, Mingozzi et al.	1998	Branch and bounds, A new 0-1 linear programm ing formulatio n, a tree search	Relaxation heuristic method			Based on a new mathematical formulation which is used to derive 5 new lower bounds and also described a new tree search algorithm based on this exact formulation that uses the new bounds
			algorithm				
162	Dan Zhu &RemaPadma n	1997				Artificial neural networks	Apply neural networks to induce the relationship between project parameters and heuristic performance to guide the selection under different project environments
163	Rainer Kolisch& Andreas Drexl	1997		a new local search			Propose a new local search method that first tries to and a feasible solution and secondly performs a single- neighborhood search on the set of feasible mode assignments.
164	Arno Sprecher et al.	1997	a new branch and bound algorithm				Present a new procedure which is a considerable generalization of the branch and-bound algorithm proposed by Demeulemeester and Herroelen
165	Kedar S. Naphade et al.	1997			Two distinctly different problem space search procedures		Embed a fast base heuristic (for instance, a dispatching rule) within a search procedure, then showing comparable performance to the branch-and-bound algorithm.
166	Moizuddin, Mohammed& Selim, S. Z.	1997			TS		The algorithm uses the priority space for generating neighbors. it also employed uses a short-term memory component. to optimize the TS parameters that developed are 3 ^k factorial design.
167	Erik Demeulemeest er, Willy S L Herroelen	1997	A new branch and bound algorithm				Describe a new depth-first branch-and-bound algorithm(GDH-PROCEDURE)
168	Kum-Khiong, yang	1996		MINSLA K, CPR, FCFS	SA		A total of one scheduling and three heuristic dispatching rules that these planning rules are used to specify the priority of each activity in a project b ranking the precedence-feasible activities on an activity priority list.
169	OyaIcmeli, S SelcukErengu c	1996	A branch and bound procedure				The bounds in the branch and bound procedure are computed by solving payment-scheduling problem that can be formulated as linear programs and by that are well solvable.
170	F.Brian Talbot	1982	Integer program- ings	A heuristic solution			A two stages solution methodology is developed which builds upon idea presented earlier. Stage one defines the problem as a compact integer-programming problem, stage two searches for the optimal solution using an implicit enumeration scheme that systemically improves upon generated heuristic solutions.
171	Jan Weglarz	1981	A priority analyses				The properties of optimal schedules are given for strictly, concave and convex activity models.
172	Dale F Cooper	1976		PSGS, Tow classes of heuristic procedure			Assess the effects of the heuristic method, the project characteristics and the priority rules
173	Arne Thesen	1976		A new heuristic method			Extend the fields of heuristic algorithms for RCPSP. a sub optimizing resource allocation algorithm is employed, A new hybrid heuristic urgency factor is introduced and finally a systematic approach to the evaluation of the such algorithm is presented
174	E. W. Davis& G. E. Heidorn	1971		A dynamic programm			A dynamic programming approach that is a form of bounded enumeration. is presented to perform the shortest-path determination during construction of the a-network

				ing approach		
17	5. A. Thomas Mason, Colin L Moodie	1971	A branch and bound procedure,	A heuristic method		Cost bounding procedures are augmented by dominance relationships presented as theorems. Initial feasible schedules are generated using a heuristic scheduling rule. Both heuristics rule and the branch and bound algorithm have been programmed for the computer
17	6.Jerome D.Wiest	1967		A heuristic method		Describe a computer model capable of scheduling single or multiple projects within theirs constraints

In table 2 the approaches on RCPSP subject are categorized in different level. as seen most of the approaches are definite and discrete which is a big question that why researchers did not intend to work on other field.

			Approaches			Number of	approaches		
	Authors		Det.		Stoch	astic		Discrete	Integrated
		Year		Reactive	Proactive	Stochastic	Fuzzy		
1.	D.C. Paraskevopoulos et al.	2012	M					Ø	
2.	Chen Fang, Ling Wang	2012	N					Ŋ	
3.	Mohamed Haouari et al	2012	R					Ŋ	
4.	Ling Wangn, ChenFang	2012				N		N	
5.	Thomas S. Kyriakidis et al.	2012	Q					Ŋ	
6.	Koorush Ziarati et al.	2011				Ŋ		Ø	
7.	Shu-Shun Liu, Chang-Jung Wang	2011	Ø						Ø
8.	FilipDeblaere et al.	2011			Ø			Ø	
9.	SiamakBaradaran et al.	2011	Ø					Ø	
10.	Mohammad Ranjbar et al.	2011	Q					Ŋ	
11.	R. Čapek et al.	2011	Ø					Ø	
12.	MariemTrojet et al.	2011	Ø					Ø	
13.	Ling Wang, Chen Fang	2011	Ø					Ø	
14.	José Coelho, Mario Vanhoucke	2011	Ø					Ø	
15.	Ruey-Maw Chen	2011	Ø					Ø	
16.	Shanshan Wu et al.	2011	Q					Ø	
17.	Mahdi Mobini et al.	2011	Ø					Ø	
18.	OumarKone et al.	2011	Ø					Ø	
19.	LucioBianco, MassimilianoCaramia	2011	Q					Ø	
20.	Agustín Barrios et al.	2011	Q					Ø	
21.	AnuragAgarwal et al.	2011	Ŋ					Ø	
22.	Francisco Ballestiín, Rosa Blanco	2011	Q					Ø	
23.	FilipDeblaere et al.	2011		Ø				Ø	

Table 2: Approaches C	ategories
-----------------------	-----------

24.	TarunBhaskar et al.	2011				Ø	Ø	
25.	GrzegorzWaligóra	2011	R				M	
26.	José Fernando Gonçalves et al.	2011	R				M	
27.	Vincent Van Peteghem,Mario Vanhoucke	2011	A				N	
28.	Reza Zamani	2011	R				M	
29.	Olivier Lambrechts et al.	2011		N			N	
30.	BehzadAshtiani et al.	2011			Ø		Ø	
31.	Francisco Ballestín et al.	2011	A				Ŋ	
32.	Jie Zhu et al.	2011	Ŋ				Ŋ	
33.	Mohammad Jaberi	2011	A				Ŋ	
34.	Hong Zhang, Feng Xing	2010				Ŋ	Ŋ	
35.	E. Klerides, E. Hadjiconstantinou	2010			Ø		Ø	
36.	Qi Hao et al.	2010	Ŋ				Ŋ	
37.	Svio B. Rodrigues, Denise S. Yamashita	2010	Ŋ				N	
38.	SondaElloumi , Philippe Fortemps	2010	Ŋ				Ŋ	
39.	AnisKooli et al.	2010	Ŋ				N	
40.	Jairo R. Montoya-Torres et al.	2010	Ŋ				N	
41.	SiamakBaradaran et al.	2010			Ø		M	
42.	Moslem Shahsavar et al.	2010	Ŋ				M	
43.	C.U. Fündeling, N. Trautmann	2010	Ŋ				M	
44.	Ruey-Maw Chen et al.	2010	Ŋ				M	
45.	Wang Chen et al.	2010	Ø				Ø	
46.	Vincent Van Peteghem, Mario Vanhoucke	2010	Ŋ				M	
47.	E. Klerides, E. Hadjiconstantinou	2010			Ø		Ø	
48.	Andrei Horbach	2010	Ø				Ø	
49.	Angela H. L. Chen & Chiuh-Cheng Chyu	2010	N				Ø	
50.	Wang Hong et al.	2010	Ŋ				Ø	
51.	Reza Zamani	2010	Ŋ				N	
52.	JiupingXu&Zhe Zhang	2010				Ø	N	
53.	Isabel Correia et al.	2010	Ø				N	
54.	Wang Xianggang& Huang Wei	2010				Ø	N	
55.	H. R. Yoosefzadeh et al.	2010	A				Q	

56.	Angelo Oddi et al.	2010	N					R	
57.	Doreen Krüger&Armin Scholl	2010	Ð					R	
58.	YuryNikulin&Andreas Drexl	2010					A	Ø	
59.	Tyson R. Browning &Ali A. Yassine	2010				Ø		Ø	
60.	Fawaz S. Al-Anzi et al.	2010	R					R	
61.	M. Ranjbar& F. Kianfar	2010				Ø		N	
62.	N. Damak et al.	2009	R					N	
63.	PengWuliang, Wang Chengen	2009	R					N	
64.	Liang Yan et al.	2009				Ø		Ø	
65.	Po-Han Chen,Seyed Mohsen Shahandashti	2009	N					Ø	
66.	Po-Han Chen,HaijieWeng	2009	Ø					Ø	
67.	VikramTiwari et al.	2009	Q					Ø	
68.	Jiaqiong Chen, Ronald G. Askin	2009	Ø					Ø	
69.	Mohammad Ranjbar et al.	2009	Q					Ø	
70.	Antonio Lova et al.	2009	Ŋ					Ø	
71.	J.J.M. Mendes et al.	2009	A					Ø	
72.	Kuo-Ching Ying et al.	2009	Ŋ					Ø	
73.	Wu Yu et al.	2009	N					Ø	
74.	JörgHomberger	2011	Q					Ø	
75.	C.C. Chyu&Z.J. Chen	2009	Q					Ø	
76.	M. D. Mahdi Mobini et al.	2009	Q					Ø	
77.	Christian Artigues& Cyril Briand	2009	Ø					Ø	
78.	Shu-Shun Liu,Chang-Jung Wang	2008	R					N	
79.	Nai-Hsin Pan et al.	2008	R					Ø	
80.	Stijn Van de Vonder et al.	2008		R				N	
81.	Francisco Ballestín et al.	2008	N					N	
82.	R. Alvarez-Valdes et al.	2008	R					N	
83.	J.F. Gonçalves et al.	2008	N					N	
84.	Hédi Chtourou & Mohamed Haouari	2008			Ø			Ø	
85.	Haitao Li, Keith Womer	2008	Ø						Supply chain configuration problem (SCCP) under resource constraints
86.	LuongDuc Long, ArioOhsato	2008					Ø	Ø	
87.	Mohammad Ranjbar	2008	R					Ø	
88.	Marek Mika et al.	2008	A					Ø	

89.	Mario Vanhoucke	2008	A					R	
90.	Shih-Tang Lo et al.	2008	Ø					Ø	
91.	Vicente Valls et al.	2008	N					Ø	
92.	LE. Drezet, JC. Billaut	2008	N					Ø	
93.	Mario Vanhoucke, Dieter Debels	2008	Ø					Ø	
94.	B. Jarboui et al.	2008	R					Ø	
95.	Sanjay Kumar Shukla et al.	2008					M	Ø	
96.	Olivier Lambrechts et al.	2008		Ø	Ø			Ø	
97.	Olivier Liess&Philippe Michelon	2008	N					Ø	
98.	A. A. Lazarev& E. R. Gafarov	2008	M					Ø	
99.	MajidSabzehparvar& S. Mohammad Seyed- Hosseini	2008	Ø					Ø	
100.	Jean Damay et al.	2007	Ŋ					Ø	
101.	ShahramShadrokh, FereydoonKianfar	2007	M					Ø	
102.	Mohammad R. Ranjbar, FereydoonKianfar	2007	N					Ø	
103.	JirachaiBuddhakulsomsi, David S. Kim	2007			Ø			Ø	
104.	Stijn Van de Vonder et al.	2007		R				R	
105.	Jacques Carlier, Emmanuel Ne'ron	2007	Ŋ					Ø	
106.	M. Rabbani et al.	2007				Ø			RCPSP-TOC
107.	VéroniqueBouffard&Jacqu es A. Ferland	2007	Ŋ					Ø	
108.	RinaAgarwal et al.	2007			R			Ø	
109.	Lin-Yu Tseng, Shih-Chieh Chen	2006	N					Ø	
110.	Amir Azaron, Reza Tavakkoli-Moghaddam	2006			R			Ø	
111.	Luciano LessaLorenzoni et al.	2006	Ŋ						Ø
112.	Dieter Debels et al.	2006	Ŋ					Ø	
113.	Hong Zhang et al.	2006	Ŋ					Ø	
114.	John-Paris Pantouvakis, Odysseus G. Manoliadis	2006	Ŋ					Ø	
115.	Guidong Zhu et al.	2006	Ŋ					Ø	
116.	I-Tung Yang, Chi-Yi Chang	2005						Ø	
117.	Marek Mika et al.	2005	Q					Ø	
118.	M.A. Al-Fawzan, Mohamed Haouari	2005		Ø				Ø	
119.	KwanWoo Kim	2005					M	Ø	
120.	Tamás Kis	2005	N					Ø	

121.	Sophie Demassey&Chiristian	2005	Ø					Ø	
122.	Krzysztof Fleszar, Khalil S. Hindi	2004	Ŋ					Ŋ	
123.	Juite Wang	2004					Ø	Ŋ	
124.	I.E. Diakoulakis et al.	2004	Ŋ					Ø	
125.	Reza Zamani	2004	Ø					Ø	
126.	ChristophMellentien	2004	Ø					Ø	
127.	Vicente Valls & Francisco Ballestín	2004	Ø					Ø	
128.	Philippe Baptiste& Sophie Demassey	2004	Ŋ					Ŋ	
129.	Mireille Palpant et al.	2004	M					Ø	
130.	A. Lim et al.	2004			Ø			Ø	
131.	Christian Artigues et al.	2003		Ø	Ø			Ø	
132.	Vicente Valls et al.	2003	Ø					Ø	
133.	J. Carlier, E. N_eron	2003	Ø					Ŋ	
134.	DimitriGolenko-Ginzburg et al.	2003				Ø		Ø	
135.	Roland Heilmann	2003	Ŋ					Ŋ	
136.	Kwan Woo Kim et al.	2003	Ŋ					Ŋ	
137.	M Kamrul Ahsan & De-Bi Tsao	2003	Ŋ					Ŋ	
138.	J Alcaraz et al.	2003	Ŋ					Ø	
139.	Chiu-Chi Wei et al.	2002				Ø			RCPSP-TOC
140.	Amedeo Cesta& Angelo Oddi	2002	Ŋ					Ŋ	
141.	A Sprecher	2002				R		Ŋ	
142.	Mario Vanhoucke et al.	2001	Ŋ					Ŋ	
143.	Birger Franck et al.	2001	Ŋ					Ŋ	
144.	Gunduz Ulusoy et al.	2001	Ŋ					Ŋ	
145.	Sönke Hartmann	2001	Ø					Ŋ	
146.	A. Kimms	2001	Ø					Ŋ	
147.	J. Prashant Reddy et al.	2001	Ŋ					Ŋ	
148.	Antonio Lova & Pilar Tormos	2001	Ø					Ŋ	
149.	Joanna Jozefowska et al.	2001	Ŋ					Ŋ	
150.	Pilar Tormos & Antonio Lova	2001	Ø					Ŋ	
151.	Roland Heilmann	2001				R		Ŋ	
152.	Gary Knotts et al.	2000				R		Ŋ	
153.	Christoph Schwindt & Norbert Trautmann	2000		Ø				Ŋ	
154.	Erik Demeulemeester et al.	2000	Ø					Ø	

155.	Ulrich Dorndrof et al.	2000	N			M	
156.	Arno Sprecher	2000	N			N	
157.	Tam P. W. M. & E. Palaneeswaran	1999	R			Ŋ	
158.	Shue Li-Yen,RezaZamani	1999	R			Ŋ	
159.	Paul R. Thomas & Said Salhi	1998	M			Ŋ	
160.	Abel A.Fernandez	1998			Ø	Ŋ	
161.	Aristide, Mingozzi et al.	1998	M			N	
162.	Dan Zhu&RemaPadman	1997	M			Ŋ	
163.	Rainer Kolisch & Andreas Drexl	1997	R			Ŋ	
164.	Arno Sprecher et al.	1997	M			Ŋ	
165.	Kedar S. Naphade et al.	1997	M			N	
166.	Moizuddin, Mohammed;Selim, Shokri Z	1997	M			Ŋ	
167.	Erik Demeulemeester, Willy S L Herroelen	1997	R			Ŋ	
168.	Kum-Khiong, yang	1996			Ø	N	
169.	Oya Icmeli & S. Selcuk Erenguc	1996	M			Ŋ	
170.	F.Brian Talbot	1982	M			Ŋ	
171.	Jan Weglarz	1981	M			N	
172.	Dale F Cooper	1976	M			Ŋ	
173.	Arne Thesen	1976	R			Ŋ	
174.	Davis, Edward W;Heidorn, George E	1971	Ŋ			Ŋ	
175.	A.Thomas Mason, Colin L Moodie	1971	Ŋ			Ŋ	
176.	Jerome D.Wiest	1967	Ŋ			Ŋ	

6. Conclusion

Every day, better usage of the organizational resources such as machinery, human resource and materials are given more attentions. With existence of resource constraints, planning for achieving the goals of the contracts in projects, and at the top of them, time obligations, become more important. This paper described models and approaches in literature of project scheduling by considering resource constraints and the described models in literature that consist of more than 200 published articles in well known journals, are collected and provided in forms of a codified table. We tries to categorize models appropriately in this paper and surveys the proposed solutions for them by researches. By considering the increasing deployment of using planning and controlling project methods in organizations, factories and workshops such as powerhouse equipment construction projects and any kind of executive projects in various industries and totally, where ever there is usage of planning and controlling project, and by considering the diversity of organizations and factories, can identify the required model by considering the proposed criterions at beginning of this paper and researchers find the gaps in literature and try to fill them. We hope that the proposed solutions are reliable resources and references for gathering more information about different existence solutions in RCPSP literature.

7. References

- Agarwal A, Colak S, Erenguc S. A Neurogenetic approach for the resource-constrained project scheduling problem. Computers & Operations Research 2011; 38: 44–50.
- Ahsan M.K, Tsao D.-B. Solving Resource-Constrained Project Scheduling Problems with bi-criteria heuristics search techniques. Journal of Systems Science and Systems Engineering 2003; 12(2): 190-203.
- Al-Anzi F.S, Al-Zamel K, Allahverdi A. Weighted Multi-Skill Resources Project Scheduling. Journal of Software Engineering & Applications 2010; 3: 1125-1130.
- Alcaraz J, Maroto C, Ruiz R. Solving the Multi-Mode Resource-Constrained Project Scheduling Problem with genetic algorithms. Journal of the Operational Research Society 2003; 54: 614–626.
- Al-Fawzan M.A, Haouari M.A bi-objective model for robust resource-constrained project scheduling. International Journal Production Economics 2005; 96: 175–187.
- Alvarez-Valdes R, Crespo E, Tamarit J.M, Villa F. GRASP and path re-linking for project scheduling under partially renewable resources. European Journal of Operational Research 2008; 189: 1153– 1170.
- Artigues C, Briand C. The resource-constrained activity insertion problem with minimum time lags. Journal of Scheduling 2009; 12: 447-460.
- Artigues C, Michelon P, Reusser S. Insertion techniques for static and dynamic resource-constrained project scheduling. European Journal of Operational Research 2003; 49: 249–267.
- Ashtiani,Leus R, Aryanezhad M.B. New competitive results for the stochastic resource-constrained project scheduling 2011; 14: 157–171.
- Azaron A, Tavakkoli-Moghaddam R. A multi-objective resource allocation problem in dynamic PERT networks. Applied Mathematics and Computation 2006; 181: 163–174.
- Ballestín F, Blanco R. Theoretical and practical fundamentals for multi-objective optimization in resource-constrained project scheduling problems. Computers & Operations Research 2011; 38:51–62.
- Ballestín F, Valls V, Barrios A. An evolutionary algorithm for the resource-constrained project scheduling problem with minimum and maximum time lags. Journal of Scheduling 2011; 14:391–406.
- Ballestín F, Valls V, Quintanilla S. Pre-emption in resource-constrained project scheduling. European Journal of Operational Research 2008; 189: 1136–1152.
- Baptiste P, Demassey S. Tight LP bounds for resource constrained project scheduling. OR Spectrum 2004: 26: 251–262.
- Baradaran S, FatemiGhomi S.M.T, Ranjbar M, Hashemin S.S. Multi-mode renewable resourceconstrained allocation in PERT networks. Applied Soft Computing 2011.

- Baradaran S, FatemiGhomi S.M.T, Ranjbar M, Hashemin S.S. A hybrid scatter search approach for resource-constrained project scheduling problem in PERT-type networks. Advances in Engineering Software 2010; 41: 966–975.
- Barrios A, Ballestín F, Valls V.A double genetic algorithm for the MRCPSP/max. Computers& Operations Research 2011; 38: 33–43.
- Browning T.R, Yassine A.A. A random generator of resource-constrained multi-project network problems. Journal of scheduling 2010; 13: 143–161.
- Brucker, P., Schoo, A. and Thiele, O. A branch and bound algorithm for the resource constrained project scheduling problem. European Journal of Operation Research 1998,17: 143-158.
- Čapek R, Šůcha P, Hanzálek Z. Production scheduling with alternative process plans. European Journal of Operational Research 2011.
- Cesta A,Oddi A.A Constraint-Based Method for Project Scheduling with Time Windows. Journal of Heuristics 2002; 8: 109–136.
- Chen J, Askin R. G. Project selection, scheduling and resource allocation with time dependent returns. European Journal of Operational Research 2009; 193: 23–34.
- Chen P.-H, Shahandashti S.M. Hybrid of genetic algorithm and simulated annealing for multiple project scheduling with multiple resource constraints. Automation in Construction 2009; 18: 434–443.
- Chen P.-H, Weng H. A two-phase GA model for resource-constrained project scheduling. Automation in Construction 2009; 18: 485–498.
- Chen R.-M. Particle swarm optimization with justification and designed mechanisms for resourceconstrained project scheduling problem. Expert Systems with Applications 2011; 38: 7102– 7111.
- Chen R.-M, Wu C.-L, Wang C.-M, Lo S.-T. Using novel particle swarm optimization scheme to solve scheduling problem in PSPLIB. Expert Systems with Applications 2010; 37: 1899–1910.
- Chtourou H, Haouari M. A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Computers & Industrial Engineering 2008; 55: 183–194.
- Chyu C.-C,Chen Z.-J. Scheduling jobs under constant period-by-period resource availability to maximize project profit at a due date. The International Journal of Advanced Manufacturing Technology 2009; 42:569–580.
- Coelho J, Vanhoucke M. Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. European Journal of Operational Research 2011; 213: 73–82.
- Coelho, J. and Tavares, L. Comparative analysis of meta-heuristics for the resource constrained project scheduling problem. Technical report, Department of Civil Engineering, Institute Superior Tecnico, Portugal. 2003.
- Damak N, Jaboui B, Siarry P, Loukil T. Differential evolution for solving multi-mode resourceconstrained project scheduling problems. Computers & Operations Research 2009; 36: 2653 – 2659
- Damay J, Quilliot A, Sanlaville E. Linear programming based algorithms for preemptive and nonpreemptive RCPSP. European Journal of Operational Research 2007; 182: 1012–1022.
- Davis E.W, Heidorn G.E. An Algorithm for optimal project scheduling under Multiple resource constraints. Management science 1971; 17(12): B803-B816.
- Debels D, De Reyck B, Leus R, Vanhoucke M. A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. European Journal of Operational Research 2006; 169: 638–653.

- Deblaere F, Demeulemeester E, HerroelenW.Proactive policies for the stochastic resource-constrained project scheduling problem. European Journal of Operational Research 2011; 214: 308–316
- Deblaere F, Demeulemeester E, Herroelen W. Reactive scheduling in the multi-mode RCPSP. Computers & Operations Research 2011; 38: 63–74.
- Deckro, R. F., Winkofsky, E. P., Hebert, J. E. and Gagnon, R., A decomposition approach to multiproject scheduling. European Journal of Operation Research 1991, 51: 110-118.
- Demassey S, Artigues C. Michelon P. Constraint-Propagation-Based cutting planes: An application to the resource-constrained project scheduling. Journal on Computing 2005; 17(1): 52-65.
- Demeulemeester E, De Reyck, Herroelen W. The discrete time/resource trade-off problem in project networks: a branch-and- bound approach. Institute of Industrial Engineers Transactions 2000; 32: 1059–1069.
- Demeulemeester E.L, Herroelen W.S. A branch and bound procedure for the generalized resource constrained project scheduling problem. Operations Research 1997; 45(2): 201-212.
- Demeulemeester, E. and Herroelen, W., New benchmark results for the resource-constrained project scheduling problem. Management Science 1997, 43: 1485-1492.
- Diakoulakis I.E, Koulouriotis D.E, Emiris D.M. Resource Constrained Project Scheduling Using Evolution Strategies. Operational Research: An International Journal 2004;
- Drexl A, Grunewald J. Non-preemptive multi-mode resource-constrained project scheduling.IIE Transaction 1993; 25: 74-81.
- Drezet L.-E, Billau J.-C. A project scheduling problem with labor constraints and time-dependent activities requirements. International Journal Production Economics 2008; 112 : 217–225.
- Elloumi S, Fortemps P. A hybrid rank-based evolutionary algorithm applied to multi-mode resourceconstrained project scheduling problem. European Journal of Operational Research 2010; 205: 31– 41.
- Franck B, Neumann K, Schwindt C. Truncated branch-and-bound, schedule-construction, and scheduleimprovement procedures for resource-constrained project scheduling. OR Spectrum 2001; 23: 297–324.
- Fang C, Wang L. An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem. Computers & Operations Research 2012; 39: 890-901.
- Fleszar K, Hindi K.S. Solving the resource-constrained project scheduling problem by a variable neighborhood search. European Journal of Operational Research 2004; 155: 402–413.
- Fernandez A.A, Armacost R.L, Pet-Edwards J.J. Understanding simulation solutions to resource constrained project scheduling problems with stochastic task durations. Engineering Management Journal 1998; 10(4): 5-13.
- Fündeling C.-U, Trautmann N. A priority-rule method for project scheduling with work-content constraints. European Journal of Operational Research 2010; 203: 568–574.
- Golenko-Ginzburg D, Gonik A, Laslo Z. Resource constrained scheduling simulation model for alternative stochastic network projects.Mathematics and Computers in Simulation 2003; 63: 105–117.
- Gonçalves J.F, Resende M.G.C, Mendes J.J.M. A biased random-key genetic algorithm with forwardbackward improvement for the resource constrained project scheduling problem. Journal of Heuristics 2011; 17:467–486.
- Gonçalves J.F, Mendes J.J.M, Resende M.G.C. A genetic algorithm for the resource constrained multiproject scheduling problem. European Journal of Operational Research 2008; 189: 1171–1190.
- Hadju M. Network scheduling techniques for construction management. Kluwer Academic Publishers 1997.

- Hartmann S. Project Scheduling with Multiple Modes: A Genetic Algorithm. Annals of Operations Research 2001; 102: 111–135.
- Hao Q, Shen W, Xue Y, Wang S. Task network-based project dynamic scheduling and schedule coordination. Advanced Engineering Informatics 2010; 24: 417–427.
- Heilmann R. A branch-and-bound procedure for the multi-mode resource-constrained project scheduling problem with minimum and maximum time lags. European Journal of Operational Research 2003; 144: 348–365.
- Heilmann R. Resource–constrained project scheduling: a heuristic for the multi–mode case. OR Spectrum 2001; 23: 335–357.
- Herroelen, W., De Reyck, B. and Demeulemeester, E., Resource-constrained project scheduling: A survey of recent developments. Computers Operations Research 1998, 25(4): 279-302.
- Hong W, Tongling L, Dan L. Efficient Genetic Algorithm for Resource-Constrained Project Scheduling Problem. Transactions of Tianjin University 2010; 16: 376-382.
- Homberger J. A (μ , λ)-coordination mechanism for agent-based multi-project scheduling. OR Spectrum 2012; 34: 107-132.
- Horbach A. A Boolean satisfiability approach to the resource-constrained project scheduling problem. Annals of operations Research 2010; 181: 89–107.
- Icmeli O, Erenguc S.S. A branch and bound procedure for the resource constrained project scheduling problem with discounted cash flow. Management science 1996; 42(10): 1395-1408.
- Icmeli, O. and Rom, W. O., Solving the resource-constrained project scheduling problem with optimization subroutine library. Computers and Operation Research 1996, 23: 801-817.
- Jaberi M. Resource constrained project scheduling using mean field annealing neural networks. International Journal of Multidisciplinary Science and Engineering 2011; 2(7): 6-12.
- Jarboui B, Damak N, Siarry P, Rebai A. A combinatorial particle swarm optimization for solving multimode resource-constrained project scheduling problems. Applied Mathematics and Computation 2008; 195: 299–308.
- Kim K.W, Yun Y.S, Yoon J.M, Gen M, Yamazaki G. Hybrid genetic algorithm with adaptive abilities for resource-constrained multiple project scheduling. Computers in Industry 2005; 56: 143–160.
- Kim K.W, Gen M, Yamazaki G. Hybrid genetic algorithm with fuzzy logic for resource-constrained project scheduling. Applied Soft Computing 2003; 2(3): 174–188.
- Kimms A. Maximizing the Net Present Value of a Project Under Resource Constraints Using a Lagrangian Relaxation Based Heuristic with Tight Upper Bounds. Annals of Operations Research 2001; 102: 221–236.
- Kis T. Project scheduling: a review of recent books. Operations Research Letters 2005; 33: 105 –110.
- Kis T. A branch-and-cut algorithm for scheduling of projects with variable-intensity activities. Mathematical Programming: Series A and B 2005; 103(3): 515-539.
- Klerides E, Hadjiconstantinou E. A decomposition-based stochastic programming approach for the project scheduling problem under time/cost trade-off settings and uncertain durations. Computers & Operations Research 2010; 37: 2131–2140.
- Knotts G, Dror M, Hartman B.C. Agent-based project scheduling. Institute of Industrial Engineers Transactions2000; 32: 387- 401.
- Kolisch R, Hartmann S. Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research 2006; 174: 23–37.

- Kolisch R, Drexl A. Local search for non-preemptive multi-mode resource-constrained project scheduling. IIIE Transactions 1997; 29: 987-999.
- Kooli A, Haouari M, Hidri L, Néron E. IP-Based energetic reasoning for the resource constrained project scheduling problem. Electronic Notes in Discrete Mathematics 2010; 36: 359–366.
- Krüger D, Scholl A. Managing and modeling general resource transfers in (multi-)project scheduling. OR Spectrum 2010; 32: 369-394.
- Lambrechts O, Demeulemeester E, Herroelen W. Time slack-based techniques for robust project uncertainty. Annals of operations Research 2011; 186:443–464.
- Lambrechts O, Demeulemeester E, Herroelen W. Proactive and reactive strategies for resourceconstrained project scheduling with uncertain resource availabilities. Journal of Scheduling 2008; 11: 121–136.
- Lazarev A. A, Gafarov E. R. On Project Scheduling Problem. Automation and Remote Control 2008; 69(12): 2070-2087.
- Li H, Womer K. Modeling the supply chain configuration problem with resource constraints. International Journal of Project Management 2008; 26: 646–654.
- Liess O, Michelon P. A constraint programming approach for the resource-constrained project scheduling problem. Annals of Operations Research 2008; 157: 25–36.
- Lim A, Rodrigues B, Thangarajoo R, Ziao F. A Hybrid Framework for Over-Constrained Generalized Resource-Constrained Project Scheduling Problems. Artificial Intelligence Review 2004; 22: 211–243.
- Liu S, Wang C. Optimizing project selection and scheduling problems with time-dependent resource constraints. Automation in Construction 2011; 20: 1110–1119
- Liu S.-S, Wang C.-J. Resource-constrained construction project scheduling model for profit maximization considering cash flow. Automation in Construction 2008; 17: 966–974.
- Li-Yen S, Zamani, R.An intelligent search method for project scheduling problems. Journal of Intelligent Manufacturing 1999; 10 (3-4): 279-288.
- Lo S.-T, Chen R.-M, Huang Y.-M, Wu C.-L. Multiprocessor system scheduling with precedence and resource constraints using an enhanced ant colony system. Expert Systems with Applications 2008; 34: 2071–2081.
- Lova A, Tormos P, Cervantes M, Barber F. An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal Production Economics 2009; 117: 302–316.
- Lova A, Tormos P. Analysis of Scheduling Schemes and Heuristic Rules Performance in Resource-Constrained Multi-project Scheduling. Annals of Operations Research 2001; 102: 263–286.
- Mendes J.J.M, Gonçalves J.F, Resend M.G.C. A random key based genetic algorithm for the resource constrained project scheduling problem. Computers & Operations Research 2009; 36: 92 109.
- Merkle, D., Middendorf, M. and Schmeck. H. Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation 2002, 6: 333–346.
- Mika M, Waligóra G, Węglarz J. Simulated annealing and tabu search for multi-mode resourceconstrained project scheduling with positive discounted cash flows and different payment models. European Journal of Operational Research 2005; 164: 639–668.
- Mingozzi A, Maniezzo V, Ricciardelli S, Bianco L. An exact algorithm for resource-constrained project scheduling problem based on a new mathematical formulation. Management science 1998; 44(5): 714-729.
- Mobini M, Mobini Z, Rabbani M. An Artificial Immune Algorithm for the project scheduling problem under resource constraints. Applied Soft Computing 2011; 11: 1975–1982.

- Mobini M. Rabbani M, Amalnik M.S, Razmi J. Rahimi-Vahed A.R. Using an enhanced scatter search algorithm for a resource-constrained project scheduling problem. Soft Computing 2009; 13: 597-610.
- Mohring R, Schulz A, Stork F, and Uetz M. Solving project scheduling problems by minimum cut science 2003; 46(3): 330-350.
- Moizuddin M, Selim S.Z. Project scheduling under limited resources. American Association of Cost Engineers international Transaction 1997; 3: 1-7.
- Montoya-Torres J. R, Gutierrez-Franco E, Pirachicán-Mayorga C. Project scheduling with limited resources using a genetic algorithm. International Journal of Project Management 2010; 28: 619–628.
- Naphade K.S, Wu S.D, Storer R.H. Problem space search algorithms for resource-constrained project scheduling. Annals of Operations Research 1997; 70: 307 326.
- Nonobe, K. and Ibaraki, T. Formulation and tabu search algorithm for the resource constrained project scheduling problem. In C. C. Ribeiro and P. Hansen, Essays and Surveys in Meta-heuristics,. Kluwer Academic Publishers, 2002, 557–588.
- Oddi, Cesta, Policella N, Smith S.F. Iterative flattening search for resource constrained scheduling. Journal of Intelligent Manufacturing 2010; 21: 17-30.
- Palpant M, Artigues C. Michelon P. LSSPER: Solving the Resource-Constrained Project Scheduling Problem with Large Neighborhood Search. Annals of Operations Research 2004; 131: 237–257.
- Pan N.-H, Hsaio P.-W, Chen K.-Y. A study of project scheduling optimization using TABU Search algorithm. Engineering Applications of Artificial Intelligence 2008; 21: 1101–1112.
- Pantouvakis J.-P, Manoliadis O.G. A practical approach to resource-constrained project scheduling. Operational Research: An International Journal 2006; 6(3): 299-309.
- Paraskevopoulos D.C, Tarantilis C.D, Ioannou G. Solving project scheduling problems with resource constraints via an event list-2012; 39: 3983–3994.
- Peteghem V, Vanhoucke M. Using resource scarceness characteristics to solve the multi-mode resourceconstrained project scheduling problem Journal of Heuristics 2011; 17:705–728.
- Rabbani M, FatemiGhomi S.M.T, Jolai F, Lahiji N.S. A new heuristic for resource-constrained project scheduling in stochastic networks using critical chain concept. European Journal of Operational Research 2007; 176: 794–808.
- Ranjbar M, Khalilzadeh M, Kianfar F, Etminani K. An optimal procedure for minimizing total weighted resource tardiness penalty costs in the resource-constrained project scheduling problem. Computers & Industrial Engineering 2011.
- Ranjbar M, Kianfar F. Resource-Constrained Project Scheduling Problem with Flexible Work Problems: A Genetic Algorithm Approach. Transaction E: Industrial Engineering 2010; 17(1): 25-35.
- Ranjbar M, De Reyck B, Kianfar F. A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling. European Journal of Operational Research 2009; 193: 35–48.
- Ranjbar M. Solving the resource-constrained project scheduling problem using filter-and-fan approach. Applied Mathematics and Computation 2008; 201: 313–318.
- Ranjbar M. R, Kianfar F. Solving the discrete time/resource trade-off problem in project scheduling with genetic algorithms. Applied athematics and Computation 2007; 191: 451–456.
- Reddy J. P, Kumanan S, Chetty O.V.K. Application of Petri Nets and a Genetic Algorithm to Multi-Mode Multi-Resource Constrained Project Scheduling. The International Journal of Advanced Manufacturing Technology 2001; 17:305-314.

^{*}Corresponding author (Mohammad Abdolshah). Tel: +98-231-4462198 E-mail address: <u>abdolshah@gmail.com</u>. ©2014. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies. Volume 5 No.4 ISSN 2228-9860 eISSN 1906-9642. Online Available at <u>http://tuengr.com/V05/0253.pdf</u>.

- Rodrigues S. B, Yamashita D. S. An exact algorithm for minimizing resource availability costs in project scheduling. European Journal of Operational Research 2010; 206: 562–568.
- Schwindt C, Trautmann N. Batch scheduling in process industries: an application of resource-constrained project scheduling. OR Spectrum 2000; 22: 501–524.
- Shadrokh S, Kianfar F. A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. European Journal of Operational Research 2007; 181: 86–101.
- Shahsavar M, AkhavanNiaki S.T, Najafi A.A. An efficient genetic algorithm to maximize net present value of project payments under inflation and bonus-penalty policy in resource investment problem. Advances in Engineering Software 2010; 41: 1023–1030.
- Sprecher A. Network decomposition techniques for resource-constrained project scheduling. Journal of the Operational Research Society 2002; 53: 405–414.
- Sprecher A. Scheduling resource-constrained projects competitively at modest memory requirements. Management science 2000; 46(5): 710-723.
- Sprecher A, Hartmann S, Drexl A. An exact algorithm for Project scheduling with multiple mode. OR Spectrum 1997; 19: 195- 203.
- Shukla S.K, Son Y.J, Tiwari M.K. Fuzzy-based adaptive sample-sort simulated annealing for resourceconstrained project scheduling. The International Journal of Advanced Manufacturing Technology 2008; 36:982–995
- Tam P.W.M, Palaneeswaran E. The use of enhanced positional weight method for constrained resource project scheduling. Canadian Journal of Civil Engineering 1999; 26(2): 242-247.
- Tareghian, H. R., Farahi, M. H. and Moarrab, M. Solving Resource Constrained Scheduling Problem by Genetic Algorithm. Shahid Chamran Univ. Journal of Science 2007, 16: 24-35
- Thesen A. Heuristic scheduling of activities under resource and precedence restrictions. Management Science 1976; 23(4): 412-422.
- Tiwari V, Patterson J.H, Mabert V.AScheduling projects with heterogeneous resources to meet time and quality objectives. European Journal of Operational Research 2009; 193: 780–790.
- Tormos P, Lova A. A Competitive Heuristic Solution Technique for Resource-Constrained Project Scheduling. Annals of Operations Research 2001; 102: 65–81.
- Thomas P.R, Salhi S. A TABU search approach for the resource constrained project scheduling problem. Journal of Heuristics 1998; 4: 123–139.
- Thomas Mason, A.; Moodie, Colin L., A branch and bound algorithm for minimizing cost in project scheduling, 1971, Management Science; Dec1971 Part 1, Vol. 18 Issue 4, pB-158
- Tseng L.-Y, Chen S.-C. A hybrid meta-heuristic for the resource-constrained project scheduling problem. European Journal of Operational Research 2006; 175: 707–721.
- Trojet M, H'Mida F, Lopez P. Project scheduling under resource constraints: Application of the cumulative global constraint in a decision support framework. Computers & Industrial Engineering 2011; 61: 357–363.
- Ulusoy G. Four Payment Models for the Multi-Mode Resource Constrained Project Scheduling Problem with Discounted Cash Flows. Annals of Operations Research 2001; 102: 237–261.
- Valls V, Ballestín F, Quintanilla S. A hybrid genetic algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research 2008; 185: 495–508.
- Valls V, Ballestín F. A Population-Based Approach to the Resource-Constrained Project Scheduling Problem. Annals of Operations Research 2004; 131: 305–324.
- Valls, V., Perez, M. A. and Quintanilla, M. S. Justification and RCPSP: A technique that pays. European Journal of Operations Research, 2004, 152: 134-149.

- Valls V, Quintanilla S,Ballestín F. Resource-constrained project scheduling: A critical activity reordering heuristic. European Journal of Operational Research 2003; 149: 282–301.
- Van Peteghem V, Vanhoucke M. A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research 2010; 201: 409–418.
- Van De Vonder S, Demeulemeester E, Herroelen W. Proactive heuristic procedures for robust project scheduling: An experimental analysis. European Journal of Operational Research 2008; 189: 723–733.
- Van De Vonder S, Ballestín F, Demeulemeester E, Herroelen W. Heuristic procedures for reactive project scheduling. Computers & Industrial Engineering 2007; 52: 11–28.
- Vanhoucke M, Debels D. The impact of various activity assumptions on the lead time and resource utilization of resource-constrained projects. Computers & Industrial Engineering 2008; 54: 140–154.
- Waligóra G. Heuristic approaches to discrete-continuous project scheduling problems to minimize the make span. Computational Optimization and Applications 2011; 48: 399–421.
- Wang J. A fuzzy robust scheduling approach for product development projects. European Journal of Operational Research 2004; 152: 180–194.
- Wang L, Fang C. An effective estimation of distribution algorithm for the multi-mode resourceconstrained project scheduling problem. Computers & Operations Research 2012; 39: 449-460.
- Wang L, Fang C. An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Information Sciences 2011; 181: 4804–4822.
- Wang L, Fang C. A hybrid estimation of distribution algorithm for solving the resource-constrained project scheduling problem 2011.
- Wei C.-C, Liu P.-H, Tsai Y.-C. Resource-constrained project management using enhanced theory of constraint. International Journal of Project Management 2002; 20: 561–567.
- Yu Wu, Xin-cun Zhuang, Guo-hui Song , Xiao-dong Xu , Cong-xin Li, Solving resource-constrained multiple project scheduling problem using timed colored Petri nets, Journal of Shanghai Jiaotong University (Science), 2009, Volume 14, Issue 6, pp 713-719
- Wu S, W H.D, Shukla S.K, Li B. Chaos-based improved immune algorithm (CBIIA) for resourceconstrained project scheduling problems. Expert Systems with Applications 2011; 38: 3387– 3395.
- Wuliang P, Chengen W. A multi-mode resource-constrained discrete time–cost tradeoff problem and its genetic algorithm based solution. International Journal of Project Management 2009; 27: 600–609.
- Xianggang W, Wei H. Fuzzy Resource-Constrained Project Scheduling Problem for Software Development. Journal of natural sciences 2010; 15(1): 25-30.
- Yan L, Jinsong B, Xiaofeng H, Ye J. A heuristic project scheduling approach for quick response to maritime disaster rescue. International Journal of Project Management 2009; 27: 620–628.
- Ying K.-C, Lin S.-W, Lee Z.-J. Hybrid-directional planning: improving improvement heuristics for scheduling resource-constrained projects. The International Journal of Advanced Manufacturing Technology 2009; 41:358–366.
- Yoosefzadeh H. R, Tareghian H.R, Farahi M.H. Tri-directional Scheduling Scheme: Theory and Computation. Journal of Mathematical Modeling and Algorithms 2010; 9:357–373.
- Yu W, Xin-cunZ,Guo-hui S, Xiao-dong X, Cong-xin L. Solving Resource-constrained Multiple Project Scheduling Problem Using Timed Colored Petri Nets. Journal of Shanghai Jiaotong University 2009; 14(6): 713-719.

- Zamani R. A hybrid decomposition procedure for scheduling projects under multiple resource constraints. Operation research international journal 2011; 11:93–111.
- Zamani R. A parallel complete anytime procedure for project scheduling under multiple resource constraints. The International Journal of Advanced Manufacturing Technology 2010; 50:353–362.
- Zamani R. An efficient time-windowing procedure for scheduling projects under multiple resource constraints. OR Spectrum 2004; 26: 423–440.
- Ziarati K, Akbari R, Zeighami V. On the performance of bee algorithms for resource-constrained project scheduling problem. Applied Soft Computing 2011; 11: 3720–3733.
- Zhang H, Xing F. Fuzzy-multi-objective particle swarm optimization for time-cost-quality tradeoff in construction. Automation inConstruction 2010; 19: 1067–1075.
- Zhang H, Li H, Tam C.M. Particle swarm optimization for resource-constrained project scheduling. International Journal of Project Management 2006; 24: 83–92.
- Zhu G, Bard J.F, Yu G. A branch-and-cut procedure for the multimode resource-constrained project scheduling problems. Journal on Computing 2006; 18(3): 377-390.
- Zhu J, Li X, Shen W. Effective genetic algorithm for resource-constrained project scheduling with limited preemptions. International Journal of Machine Learning and Cybernetics 2011; 2:55–65.
- Zhua D, Padman R. Connectionist approaches for solver selection in constrained project scheduling. Annals of Operations Research 1997; 72: 265 – 298.

Dr.Mohammad Abdolshah received his B.Sc. and M.Sc in Industrial Engineering from Amirkabir University of Technology, Tehran, Iran. Later , he obtained his Ph.D. from University of Putra Malaysia, Malaysia in Industrial Engineering. Dr. Mohammad Abdolshah's current research interests are Industrial Engineering, Quality Engineering, Control Project, and Project Management.

Peer Review: This article has been internationally peer-reviewed and accepted for publication according to the guidelines in the journal's website.