
*Corresponding author (A.R.Zhumaniezov). Tel: 8(927)4068857. E-mail: myzerix58@gmail.com, ©2019
International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies.
Volume 10 No.1 ISSN 2228-9860 eISSN 1906-9642 http://TUENGR.COM/V10/001.pdf DOI:
10.14456/ITJEMAST.2019.1

1

International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies

http://TuEngr.com

A STUDY OF THE CONVERGENCE OF THE BEZOUT
COEFFICIENTS SEARCH ALGORITHM

Alisher R. Zhumaniezov a, b*

a Department of Computer Science, Faculty of Electrical Engineering, Kazan Federal University, Kazan

420008, RUSSIAN FEDERATION.
b Department of Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical

University in Prague, CZECH REPUBLIC.

A R T I C L E I N F O

A B S T R A C T

Article history:
Received 05 September 2018
Received in revised form 26
November 2018
Accepted 07 December 2018
Available online
11 December 2018
Keywords:
Euclidean algorithm;
extended Euclidean
algorithm; k-ary
algorithm for computing
GCD; calculation of
inverse elements modulo;
parallel GCD
computation.

Time is very valuable in modern technology era. An important
indicator of the program’s work is its computational speed. This article
describes the optimization of Bezout coefficients search algorithm by
introduction different optimization schemes. Among all schemes, the
following are chosen: K-ary, approximating and parallel approximating
optimization schemes. Bezout’s equation is a representation of the
greatest common divisor d of two integers A and B as a linear
combination Ax+By = d, where x, and y are integers called Bezout’s
coefficients. Bezout’s coefficients are counted using the extended
version of the classical Euclidian Algorithm.

© 2019 INT TRANS J ENG MANAG SCI TECH.

1. INTRODUCTION
In the age of modern technology, time is a very valuable resource. Therefore, an important

indicator of the program's work is its computational speed. The process of increasing the speed goes
in the following directions:
1. Increase the productivity of equipment. Achieved by using more powerful processors. The main

difficulty in this approach is the great difficulty in manufacturing such processors. Another difficulty is

the renewal of equipment on all machines, which entails additional costs.

2. Parallelizing the program. The distribution of common work between different threads allows you to

reduce the total running time of the program. However, the Bezout coefficients search algorithm is

iterative, and therefore not subject to parallelization.

3. Reduction of the asymptotic complexity of the algorithm used. This approach will be used in this work.

It consists in reducing the number of elementary operations used by the algorithm.

The Bezout relation is the representation of the greatest common divisor of integers in the form

©2019 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies.

2 Alisher R. Zhumaniezov

of their linear combination with integer coefficients (Hasse, 1950). For the case of two integers 𝐴
and 𝐵 and their 𝐺𝐶𝐷(𝐴, 𝐵) = 𝑑 — is the greatest common divisor, this relation is written in the
following form (Jones and Jones, 1998):

𝐴𝑢 + 𝐵𝑣 = 𝑑 (1)

Moreover, the coefficients 𝑢 and 𝑣 are called the Bezout coefficients.
Finding the Bezout coefficients can be used to solve the following problems:
1. The solution of linear Diophantine equations in the form (Sushkevich, 1954):

𝐴𝑥 + 𝐵𝑦 = 𝐶 (2)

2. The solution of first-degree comparisons in the form (https://brilliant.org/wiki/bezouts-identity):

𝐴𝑥 ≡ 𝐵(𝑚𝑜𝑑 𝑚) (3)

3. The search for an inverse element in a field — is a particular case of equation (3):

𝐴𝑥 ≡ 1(𝑚𝑜𝑑 𝑚) (4)

4. It is the basis for some cryptographic algorithms with a public key, such as RSA (Menezes et al,

1996).

Euclid's algorithm is an effective algorithm for finding the greatest common divisor of two
integers (Euclid’s Elements, 1949). This algorithm is iterative and is defined by:

𝐺𝐶𝐷(𝐴, 𝐵) = 𝐺𝐶𝐷(𝐵, 𝐴 𝑚𝑜𝑑 𝐵) (5)

Extended Euclidean algorithm is a modification of the Euclidean algorithm, which allows to find
Bézout coefficients (Yegorov, 1923). The main idea is to represent the resulting remainder at each
iteration in the form of a linear combination of the original numbers 𝐴 and 𝐵. For the "reverse"
approach we use the following formula (Akritas, 1994):

𝑢𝑖 = 𝑣𝑖+1

𝑣𝑖 = 𝑢𝑖+1 − 𝑣𝑖+1 ∗ 𝑞𝑖
 (6)

The main idea of optimizing the Bezout coefficients search algorithm will be to change the choice
of a new number, which should lead to a faster convergence of the algorithm and, accordingly, to a
decrease in the number of iterations.

The main disadvantage of this approach is an increasing of the load per iteration, which can lead
to a decrease in the speed of the complete algorithm. Therefore, we must also optimally find new
values for the next iteration.

At first, we estimate the convergence of the algorithms, giving them an estimate of the number
of iterations. After that using the implementation in the language Python 3, we will test in practice
the efficiency of the considered optimization schemes.

2. METHOD

2.1 K-ary extended Euclidean algorithm
The k-ary Euclidean algorithm was first published in Sorenson (Sorenson, 1990; Sorenson,

1994). Then, Weber and Jebelean improvements were proposed (Weber, 1995; Jebelean, 1993).

*Corresponding author (A.R.Zhumaniezov). Tel: 8(927)4068857. E-mail: myzerix58@gmail.com, ©2019
International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies.
Volume 10 No.1 ISSN 2228-9860 eISSN 1906-9642 http://TUENGR.COM/V10/001.pdf DOI:
10.14456/ITJEMAST.2019.1

3

This algorithm is iterative, like the original algorithm. The main difference is to find a new pair for
the next step. For this, we use the theorem proved in Weber (1995) and Jebelean (1993):

Theorem 1. Let 𝐴, 𝐵 > 0 are natural numbers and 𝑘 is a small positive number that is coprime
to 𝐴 and 𝐵. Then there are integers 𝑥 and 𝑦, satisfying the relation |𝑥|, |𝑦| ≤ [√𝑘] + 1 such that:

𝐴 ∗ 𝑥 + 𝐵 ∗ 𝑦 ≡ 0 (𝑚𝑜𝑑 𝑘) (7)

Thus, it follows directly from the theorem that the number:

𝐶 =
(𝐴 ∗ 𝑥 + 𝐵 ∗ 𝑦)

𝑘
⁄ (8)

Is natural. In case that 𝐺𝐶𝐷(𝐶, 𝑘) = 𝑑 ≠ 1 it is necessary to divide the number 𝐶 by 𝑑. Then
the transition to the next iteration has the form:

𝐺𝐶𝐷(𝐴, 𝐵) = 𝐺𝐶𝐷(𝐵, 𝐶) (9)

Note that when the algorithm works, additional multipliers may appear (Ishmukhametov, 2016).
To eliminate them, you must start recursively 𝐺𝐶𝐷(𝐴, 𝐺𝐶𝐷(𝐵, 𝑑)), where 𝑑 is the result obtained
at the output of the k-ary algorithm.

Now we get optimization for the extended Euclidean algorithm. It was proposed in the
(Ishmukhametov, 2016). In this algorithm, too, we will use the "reverse" approach. To construct the
transition formula, we present the Bezout equation:

𝐴𝑖+1 ∗ 𝑢𝑖+1 + 𝐵𝑖+1 ∗ 𝑣𝑖+1 = 𝑑 (10)

Now we substitute in this equation the transition formulas (8) and (9) and group terms. Thus, we
have explicitly obtained the transition formula for the Bezout coefficients (Ishmukhametov, 2016):

𝑢𝑖 =
𝑥𝑖 ∗ 𝑣𝑖+1

𝑘⁄

𝑣𝑖 = 𝑢𝑖+1 +
𝑦𝑖 ∗ 𝑣𝑖+1

𝑘⁄
 (11)

However, in this formula there is one drawback - the non-integer division into 𝑘. Since it is not
guaranteed that the result of dividing will always be integer, this move our calculations into the field
of real numbers, which is undesirable for us. Therefore, to stay in the field of integers, we introduce
auxiliary variables 𝑢𝑖

∗ and 𝑣𝑖
∗ (Ishmukhametov, 2016). They are defined as follows:

𝑢𝑖
∗ = 𝑢𝑖 ∗ 𝑘𝑛−𝑖

𝑣𝑖
∗ = 𝑣𝑖 ∗ 𝑘𝑛−𝑖

 (12)

Then the recurrence relation for them will be written in the form (Ishmukhametov, 2016):

𝑢𝑖
∗ = 𝑥𝑖 ∗ 𝑣𝑖+1

∗

𝑣𝑖
∗ = 𝑘 ∗ 𝑢𝑖+1

∗ + 𝑦𝑖 ∗ 𝑣𝑖+1
∗ (13)

In case there is an additional factor 𝑟𝑖 = 2𝑡𝑖 for 𝑘 = 2𝑡, then the relation (13) becomes:

𝑢𝑖
∗ = 𝑥𝑖 ∗ 𝑣𝑖+1

∗

𝑣𝑖
∗ = 𝑘 ∗ 𝑟𝑖 ∗ 𝑢𝑖+1

∗ + 𝑦𝑖 ∗ 𝑣𝑖+1
∗ (14)

Since we can't divide by 𝑘𝑛−𝑖 ∗ 𝑟, where 𝑟 = ∏ 𝑟𝑖
𝑛
𝑖=𝑟 = 2∑ 𝑡𝑖

𝑛
𝑖=1 = 2𝑇 for 𝑘 = 2𝑡 because we

4 Alisher R. Zhumaniezov

leave the field of integers, we can replace it by an integer division modulo 𝐴 = 𝐴1. We obtain the
intermediate coefficients 𝑢′ and 𝑣′ by formula for 𝑘 = 2𝑡:

𝑢′ = (𝑢1
∗ ∗ 𝑘1−𝑛 ∗ 2−𝑇) 𝑚𝑜𝑑 𝐴

𝑣′ = (𝑣1
∗ ∗ 𝑘1−𝑛 ∗ 2−𝑇) 𝑚𝑜𝑑 𝐴

 (15)

Then the Bezout equation takes the form:

𝐴1 ∗ 𝑢′ + 𝐵1 ∗ 𝑣′ = 𝑑1 ≡ 𝑑(𝑚𝑜𝑑 𝐴) (16)

Hence we obtain the final formula for the Bezout coefficients:

𝑢 = 𝑢′ − (𝑑1 𝑑𝑖𝑣 𝐴)

𝑣 = 𝑣′ (17)

2.2 Approximating extended Euclidean algorithm
Optimization of the k-ary algorithm was presented by Ishmukhametov and Rubtsova (2016).

The main idea is the replacement of the algorithm for finding the coefficients 𝑥 and 𝑦 for the next

iteration. For this |𝑥| is taken from the interval (0; 𝑘) and 𝑦 is taken close to − 𝐴 ∗ 𝑥
𝐵⁄ .

At first we introduce the following notation:

𝑞 = 𝐴 𝐵⁄ 𝑚𝑜𝑑 𝑘 (18)

𝑟 = 𝐴 𝐵⁄ (19)

𝑟 − 𝑞 = 𝑟1 + 𝑘 ∗ 𝑠1 (20)

𝑟0 = 𝑟1 𝑘⁄ (21)

Now we get the formula for 𝐶 (Ishmukhametov and Rubtsova, 2016):

|𝐶| = |
𝐴∗𝑥+𝐵∗𝑦

𝑘
| = 𝐵 |

𝑟∗𝑥+𝑦

𝑘
| = 𝐵|𝑟0𝑥 + (𝑠1 ∗ 𝑥 + 𝑠)| = 𝐵 |

𝑢

𝑣
𝑥 + 𝑠1 ∗ 𝑥 + 𝑠| (22)

We note that the original fraction 𝑢

𝑣
 has an arbitrary form, so we must find an approximation

𝑚

𝑛
≈

𝑢

𝑣
 (for example an algorithm using Farey's sequence) on condition 𝑛 < 𝑘. Then formula (22)

takes the form:

|𝐶| = 𝐵 |
𝑢

𝑣
𝑥 + 𝑠1 ∗ 𝑥 + 𝑠| ≈ 𝐵 |

𝑚

𝑛
𝑥 + 𝑠1 ∗ 𝑥 + 𝑠| (23)

Then the minimum, which is equal to 0, will be achieved with 𝑥 = 𝑛 and 𝑠 = −𝑚 − 𝑠1 ∗ 𝑛.
Now we obtain the final formulas for the transition:

 𝑥 = 𝑛

 𝑠 = −𝑚 − 𝑠1 ∗ 𝑛 (24)

 𝑦 = 𝑠 ∗ 𝑘 − 𝑞 ∗ 𝑥

The basic steps of the algorithm are the same as for the k-ary extended algorithm. The only
difference is the use of a different approach for choosing the coefficients 𝑥 and 𝑦. For this, an
algorithm using Farey's sequence is used, as in the usual approximating algorithm.

*Corresponding author (A.R.Zhumaniezov). Tel: 8(927)4068857. E-mail: myzerix58@gmail.com, ©2019
International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies.
Volume 10 No.1 ISSN 2228-9860 eISSN 1906-9642 http://TUENGR.COM/V10/001.pdf DOI:
10.14456/ITJEMAST.2019.1

5

2.3 Parallel approximating extended Euclidean algorithm
When using Farey sequence, we first obtain an approximation segment, from which we then

select one of the end points. Hence the second approach follows, when we take both end points
(Ishmukhametov and Rubtsova, 2017). Then the transition to (9) is transformed into:

𝐺𝐶𝐷(𝐴, 𝐵) = 𝐺𝐶𝐷(𝐶1, 𝐶2) (25)

Then the transition to (13) is transformed into:

𝑢𝑖
∗ = 𝑥𝑖

1 ∗ 𝑢𝑖+1
∗ + 𝑥𝑖

2 ∗ 𝑣𝑖+1
∗

𝑣𝑖
∗ = 𝑦𝑖

1 ∗ 𝑢𝑖+1
∗ + 𝑦𝑖

2 ∗ 𝑣𝑖+1
∗ (26)

And if there are additional factors 𝑟𝑖
1 and 𝑟𝑖

2 introduce 𝑟𝑖 = 𝐿𝐶𝑀(𝑟𝑖
1, 𝑟𝑖

2) and additions to 𝑟𝑖:

𝑟𝑖
1′ = 𝑟𝑖/𝑟𝑖

1

𝑟𝑖
2′ = 𝑟𝑖/𝑟𝑖

2 (27)

Then instead of (14) we obtain the following transition:

𝑢𝑖
∗ = 𝑥𝑖

1 ∗ 𝑢𝑖+1
∗ ∗ 𝑟𝑖

1′ + 𝑥𝑖
2 ∗ 𝑣𝑖+1

∗ ∗ 𝑟𝑖
2′

𝑣𝑖
∗ = 𝑦𝑖

1 ∗ 𝑢𝑖+1
∗ ∗ 𝑟𝑖

1′
+ 𝑦𝑖

2 ∗ 𝑣𝑖+1
∗ ∗ 𝑟𝑖

2′
 (28)

All other formulas keep unchanged.

For parallelization, the portion of the algorithm that computes 𝐶1 and 𝐶2. Each of them can be
calculated independently.

3. RESULTS AND DISCUSSION

3.1 K-ARY EXTENDED EUCLIDEAN ALGORITHM
We construct an upper bound for 𝐶:

 |𝐶| =
|𝐴 ∗ 𝑥 + 𝐵 ∗ 𝑦|

𝑘
⁄ ≤

|𝐴 ∗ 𝑥| + |𝐵 ∗ 𝑦|
𝑘

⁄ = 𝐴 ∗ |𝑥|
𝑘

⁄ +
𝐵 ∗ |𝑦|

𝑘
⁄ ≤ 2 ∗ 𝐴

√𝑘
⁄ (29)

From this estimate it follows that at each step the greater of the numbers decreases at least √𝑘
2

⁄
times (Ishmukhametov and Rubtsova, 2016). Thus, we obtain an estimation for the number of
iterations 𝑇(𝐴, 𝐵) for any pair 𝐴 and 𝐵:

𝑇(𝐴, 𝐵) ≤ log√𝑘
2

⁄
(𝐴) + log√𝑘

2
⁄

(𝐵) (30)

Thus, we obtain a upper bound for the average number of iterations 𝜏(𝐴) for any 𝐴
(Ishmukhametov and Rubtsova, 2016):

𝜏(𝐴) ≤ 2 ∗ log√𝑘
2

⁄
(𝐴) =

2

ln(√𝑘
2

⁄)
ln(𝐴) =

2

ln(𝑘)
2⁄ −ln(2)

ln(𝐴) ≈
4

ln(𝑘)
ln(𝐴) (31)

3.2 APPROXIMATING EXTENDED EUCLIDEAN ALGORITHM
The proof of the following theorem was presented by Ishmukhametov (2016):
Theorem 2. There is an integer 𝑥, 1 ≤ 𝑥 ≤ 𝑘, such that:

{𝑟0𝑥} ≤
3

2𝑘
 (32)

6 Alisher R. Zhumaniezov

And the search for such 𝑥 can be produced by an algorithm with complexity 𝑂(log2(𝑘)).
From the theorem it follows directly that it is possible in an acceptable time to find such a pair

of coefficients 𝑥 and 𝑦, that:

|𝐶| = |
𝐴∗𝑥+𝐵∗𝑦

𝑘
| ≤

3𝐵

2𝑘
 (33)

That is, at each step there is a decrease in one number, at least in 2𝑘
3⁄ times. Thus we obtain a

estimation on the number of iterations 𝑇(𝐴, 𝐵) for any 𝐴 and 𝐵 from above (Ishmukhametov and
Rubtsova, 2016):

𝑇(𝐴, 𝐵) ≤ log2𝑘
3⁄
(𝐴) + log2𝑘

3⁄
(𝐵) (34)

Then the average number of iterations 𝜏(𝐴) for any 𝐴 will be limited from above:

𝜏(𝐴) ≤ 2 ∗ log2𝑘
3⁄
(𝐴) =

2

ln(2𝑘
3⁄)

ln(𝐴) ==
2

ln(𝑘)−ln(1.5)
ln(𝐴) ≈

2

ln(𝑘)
ln(𝐴) (35)

3.3 PARALLEL APPROXIMATING EXTENDED EUCLIDEAN ALGORITHM
All calculations for this algorithm are the same as for the approximating. So, as a result, we get

the formula (35).

4. SUMMARY

4.1 4-BIT MODULE

Figure 1: Comparison of the number of steps with the original algorithm (binary, 4 bit).

k-ary: As can be seen from Figure 1, the number of steps became slightly less than 1.5 times less
compared to the original algorithm. However, of all the algorithms considered, this is the worst result.

Approximating: Figure 1, the number of iterations has decreased more than 3 times in comparison
with the original algorithm. The result was close to parallel.

Parallel: Figure 1, the number of iterations has decreased more than 3 times compared to the
original algorithm. The result was close to approximating.

0

20

40

60

80

100

120

140

160

180

200

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Number of iterations

Extended Euclidean algorithm K-ary extended Euclidean algorithm

Approximating extended Euclidean algorithm Parallel extended Euclidean algorithm

*Corresponding author (A.R.Zhumaniezov). Tel: 8(927)4068857. E-mail: myzerix58@gmail.com, ©2019
International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies.
Volume 10 No.1 ISSN 2228-9860 eISSN 1906-9642 http://TUENGR.COM/V10/001.pdf DOI:
10.14456/ITJEMAST.2019.1

7

Figure 2: Comparison of the running time of the step with the original algorithm (binary, 4 bit).

From Figure 2, k-ary: the amount of work on one iteration increased about 6 times compared to
the original algorithm. This leads to a time lag in comparison with the original algorithm. It is also
clear that the running time at the step is very close to the approximating algorithm.

Approximating: Figure 2, the amount of work on one iteration increased approximately 10 times
compared to the original algorithm. This leads to a time lag in comparison with the original algorithm.

Parallel: As can be seen from Figure 2, the amount of work on one iteration increased
approximately 20 times compared to the original algorithm. This leads to a time lag in comparison
with the original algorithm. This also leads to a lag in comparison with the approximating
algorithm.

4.2 8-BIT MODULE

Figure 4: Comparison of the number of steps with the original algorithm (binary, 8-bit).

0

0.005

0.01

0.015

0.02

0.025

0.03

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Average time of one iteration

Extended Euclidean algorithm K-ary extended Euclidean algorithm

Approximating extended Euclidean algorithm Parallel extended Euclidean algorithm

0

0.005

0.01

0.015

0.02

0.025

0.03

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Average time of one iteration

Extended Euclidean algorithm K-ary extended Euclidean algorithm

Approximating extended Euclidean algorithm Parallel extended Euclidean algorithm

8 Alisher R. Zhumaniezov

k-ary: As can be seen from Figure 3, the number of steps became approximately 2 times less
compared to the original algorithm. However, of all the algorithms considered, this is the worst result.

Approximating: Figure 3, the number of iterations has decreased by approximately 6 times in
comparison with the original algorithm. The result was close to parallel.

Parallel: Figure 3, the number of iterations has decreased by approximately 6 times in comparison
with the original algorithm. The result was close to approximating.

Figure 4: Comparison of the running time of the step with the original algorithm (binary, 8-bit).

k-ary: As can be seen from Figure 4, the amount of work on one iteration increased by about 10

times in comparison with the original algorithm. This leads to a time lag in comparison with the
original algorithm. It is also clear that the running time at the step is very close to the approximating
algorithm.

Figure 4, Approximating: the amount of work on one iteration increased approximately 15 times
compared to the original algorithm. This leads to a time lag in comparison with the original algorithm.

Figure 4, Parallel: the amount of work on one iteration increased approximately 20 times
compared to the original algorithm. This leads to a time lag in comparison with the original algorithm.
This also leads to a lag in comparison with the approximating algorithm.

k-ary: from Figure 5, the number of steps became approximately 3 times less compared to the

original algorithm. However, of all the algorithms considered, this is the worst result.

Approximating: Figure 5, the number of iterations has decreased by about 7 times compared to
the original algorithm. The result was close to parallel.

Parallel: Figure 5, the number of iterations has decreased by about 7 times compared to the
original algorithm. The result was close to approximating.

0

0.005

0.01

0.015

0.02

0.025

0.03

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Average time of one iteration

Extended Euclidean algorithm K-ary extended Euclidean algorithm

Approximating extended Euclidean algorithm Parallel extended Euclidean algorithm

*Corresponding author (A.R.Zhumaniezov). Tel: 8(927)4068857. E-mail: myzerix58@gmail.com, ©2019
International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies.
Volume 10 No.1 ISSN 2228-9860 eISSN 1906-9642 http://TUENGR.COM/V10/001.pdf DOI:
10.14456/ITJEMAST.2019.1

9

4.3 16-BIT MODULE

Figure 5: Comparison of the number of steps with the original algorithm (binary, 16-bit).

Figure 6: Comparison of the running time of the step with the original algorithm (binary, 16-bit).

k-ary: shown in Figure 6, the amount of work on one iteration has greatly increased in comparison
with the original algorithm. This leads to a time lag in comparison with the original algorithm.

Approximating: Figure 6, the amount of work on one iteration has an extremely strong variance.
Because of this, it becomes difficult to evaluate the attitude to the original algorithm. It also becomes
difficult to compare with other schemes.

Parallel: see Figure 6, the amount of work on one iteration has an extremely strong variance.
Because of this, it becomes difficult to evaluate the attitude to the original algorithm. It also becomes
difficult to compare with other schemes.

0

20

40

60

80

100

120

140

160

180

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Number of iterations

Extended Euclidean algorithm K-ary extended Euclidean algorithm

Approximating extended Euclidean algorithm Parallel extended Euclidean algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

Average time of one iteration

Extended Euclidean algorithm K-ary extended Euclidean algorithm

Approximating extended Euclidean algorithm Parallel extended Euclidean algorithm

10 Alisher R. Zhumaniezov

5. CONCLUSION

The theoretical and practical questions of the Bezout coefficients search are considered.
Developed: a program containing the implementation of all the considered optimization schemes for
the extended Euclidean algorithm. Also, in the dissertation, to evaluate the efficiency of
optimization of the extended Euclidean algorithm, experiments were performed and the results are
shown.

In the course of this work, the following conclusions were made on the schemes considered:

k-ary — showed the worst result among all the considered schemes. At small values of the
module, the number of steps turned out to be greater than that of the original one, at large there was
a significant gain. The amount of work on one iteration with a small module is less than that of other
schemes, but more than the original algorithm. This leads to a total loss in time for the entire algorithm
in comparison with the original.

Approximating — showed the best result among all the considered schemes. The number of steps
is several times less than the original algorithm. For large values of the module, the number of steps
coincides in parallel with the number of steps. The amount of work on one iteration with a small
module is less than that of a parallel module, but more than the original algorithm. However, for large
values, the dispersion becomes too large, which complicates the analysis. One of the reasons may be
the nonuniform convergence of the algorithm on Farey's fractions.

Parallel — the number of steps is several times less than the original algorithm. For large values
of the module, it coincides with the number of steps with the approximating step. The amount of work
on one iteration with a small module is the largest in comparison with other algorithms. However, for
large values, the dispersion becomes too large, which complicates the analysis. One of the reasons
may be the nonuniform convergence of the algorithm on Farey's fractions.

The further direction of the study may be the reduction of the work time spent on one iteration.
Among the possible approaches: the disclosure of internal function calls, the use of a lower-level
language, the use of a faster algorithm for selecting coefficients.

6. ACKNOWLEDGEMENTS

The work is performed according to the Russian Government Program of Competitive Growth
of Kazan Federal University.

7. REFERENCES

Hasse, H. (1950). «Vorlesungen Uber Zahlentheorie», Berlin, p. 59.

Jones, G. A., Jones, J. M. (1998). §1.2. Bezout's Identity. Elementary Number Theory. Berlin: Springer-

Verlag, p. 302.

Sushkevich, А. К. (1954). The Theory of Numbers. Elementary course., Kharkov, Kharkov University

Press, 204 p.

https://brilliant.org/wiki/bezouts-identity/ [accessed Oct 2016]

Menezes, A., van Oorschot, P., Vanstone, S. (1996). Handbook of Applied Cryptography. CRC Press, p.
816.

*Corresponding author (A.R.Zhumaniezov). Tel: 8(927)4068857. E-mail: myzerix58@gmail.com, ©2019
International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies.
Volume 10 No.1 ISSN 2228-9860 eISSN 1906-9642 http://TUENGR.COM/V10/001.pdf DOI:
10.14456/ITJEMAST.2019.1

11

Euclid’s Elements V. 2. (1949). translated from Greek and commented by Mordukhai-Boltovsky D.
D. Edited by Vygotsky М. Y. and Veselovsky I.N.., М., GITTL, p. 511.

Yegorov, D. F. (1923). The Elements of Number Theory., М., Petrograd: Gosizdat, p. 202.

Akritas, А. (1994). The principles of Computer Algebra with Appendix: translated from English, М.,
Mir, p. 544.

Sorenson, J. (1990). The k-ary GCD Algorithm, Universitet of Wisconsin-Madison, Tecn.Report, pp. 1–
20.

Sorenson, J. (1994). Two fast GCD Algorithms, J.Alg. 16, No. 1, pp. 110–144

Weber, K. (1995). The accelerated integer GCD algorithm, ACM Trans.Math.Software, 21, No. 1, pp. 1–
12.

Jebelean, T. A. (1993). Generalization of the Binary GCD Algorithm, Proc. Of Intern.Symp.on Symb.and
Algebr. Comp.(ISSAC’93), pp. 111-116.

Ishmukhametov, S. Т. (2016). Calculation of Bezout Coefficients for k-ary for GCD Algorithm., КFU,
Kazan, Russia, p. 6.

Ishmukhametov, S. Т. (2016). Rubtsova Р.G. About Approximating k-ary GCD Algorithm , KFU, Кazan,

Russia, p. 4.

Ishmukhametov, S. T., Rubtsova, R. G. (2017). A parallel computation of the GCD of natural
numbers//Параллельные вычислительные технологии – XI международная
конференция, ПаВТ'2017, г. Казань, 3–7 апреля 2017 г.- Челябинск: Издательский
центр ЮУрГУ. pp.120-129

Ishmukhametov. S. T. (2016). An Approximating k-ary GCD Algorithm, Lobachevskii Journal of

Mathematics, Volume 37, Issue 6, pp. 723-729

Alisher Zhumaniezov obtained his master degree from Czech Technical University in Prague (Study
Program: Open Informatics, Field of Study: Software Engineering). He is associated with Department
of Computer Science, Faculty of Electrical Engineering, Kazan Federal University, Kazan, RUSSIA. His
research interests encompass algorithm engineering.

