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One of the methods for detection faults in structural and mechanical 

systems is processing vibrational signals extracted from the real system. 

The Hilbert–Huang transform (HHT) is a new and strong method for 

analyzing nonlinear and non-stationary vibrations based on 

time-frequency.  This approach is based on decomposing a signal into 

empirical modes and Hilbert spectral analysis. In the current paper, first, 

vibrational signals of a roller bearing are decomposed into intrinsic mode 

functions (IMFs) using ensemble empirical mode decomposition (EEMD) 

method and IMFs sensitive to impulse are determined by Kurtosis 

coefficient. Then Kurtosis and standard deviation factors are extracted 

from the mentioned IMFs and used for training and validating the multi 

layers perceptron neural network. The results of network trial showed 

faulty or normal roller bearing and its fault type. 

© 2019 INT TRANS J ENG MANAG SCI TECH. 

1. INTRODUCTION 
The best method of maintaining rotating machinery is failure detection and their evaluation 

during working. Detecting a problem on time, when the faults are minor and have no effect on the 

machine operation is very useful if the problem incidence causes can be evaluated during work. 

Vibration analysis is the strongest and most common method to determine and detect mechanical 

systems’ and bearings’ faults when the fault begins to appear (Shiroishi et al., 1997). In addition, the 

existence of noises is considered a main problem in signal processing (Zhang and Randall, 2009).  

The reason for this issue can be known as better understanding of machine performance vibrating 

mechanisms and the possible relation of changes in vibrational signal with machine dynamic 

behavior and its faults. Moreover, vibrational signals of weak bearings are affected by stronger 

rotating parts such as rotors and interfere with them (Randal and Antoni, 2011).  In this method, the 

vibrations caused by the existed faults in rotating machine parts are transferred to the body and 

structure and recorded by a sensor and analyzed by analyzer devices or computer software. 
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Time domain methods usually use statistical tools. Peak value, root mean square (RMS), 

Kurtosis (Ku) factor, crest factor (CF), etc., are some of the time domain indicators used frequently to 

detect rotating machinery faults (Randall, 2011).  Frequency domain methods work based on 

obtaining frequency spectrum of time signal through Fourier transform. Frequency spectrum is very 

useful to find an overview of signal detection.  However, as frequency spectrum shows vibration 

amplitude in the whole time interval of signal, it does not well reveal localized change in the signal. 

2. THEORETICAL BACKGROUND 

In recent years, the Hilbert–Huang transform (HHT) method has been used as one of the 

suggested and acceptable methods in the field of vibrational signals processing.  This method was 

proposed by Huang el al., for the first time in 1998.  The Hilbert–Huang transform is an adaptable 

time-frequency method for analyzing nonlinear and non-stationary signals. It is based on the 

empirical mode decomposition and the Hilbert spectrum analysis.  Rai and Mohanty (2007) used 

EMD method, fast Fourier transform (FFT), and wavelet transform in their research to identify 

defective bearings.  Considering nonlinear and non-stationary features in vibrational signal of roller 

bearings, Ali et al. (2015) used the method of feature extraction from empirical mode decomposition 

energy entropy and mathematical analysis to choose the most important intrinsic mode functions 

(IMFs). 

De Moura et al. (2011) used artificial neural networks and principal components analysis (PCA) 

to detect damage severity to rolling bearings in the outer case. Using this method, they investigated 

four states of defect including a normal state and three different states in terms of the bearing’s outer 

case damage severity and could differentiate between them.  Jinde Zheng (2013) analyzed 

vibrational signal of roller bearings through generalized empirical mode decomposition, 

experimental envelope demodulation, and HHT methods. 

2.1 EMPIRICAL MODES DECOMPOSITION (EMD) AND ENSEMBLE EMPIRICAL 
MODES DECOMPOSITION (EEMD) 

Empirical modes decomposition method is an adaptable tool for nonlinear and non-stationary 

signals analysis.  In this method, each signal is decomposed based on its local behavior. The results 

of this decomposition are intrinsic mode functions (original or manufacturer) each of which introduce 

as simple oscillation compared to a simple harmonic function.  Data related to each signal include a 

variety of oscillatory modes which interfere with each other and produce complex data. Each 

intrinsic, linear or nonlinear mode is a simple oscillation which has extrema points (maximum and 

minimum) and the same zero crossing points. In the other words, oscillations around space mean are 

symmetric. The following algorithm is run to obtain IMFs (Rai and Mohanty, 2007): 

1. The entire extrema of the original signal 𝑥(𝑡)are identified. 

2. Fitting curve on maximum and minimum points, two upper envelope curve  𝑒𝑚𝑎𝑥 (maximum 

value envelope curve) and lower envelop curve 𝑒𝑚𝑖𝑛 (minimum value envelope curve) are 

obtained. 

3. The value of 𝑚(𝑡) is calculated. 

   𝑚(𝑡) =  
𝑒𝑚𝑎𝑥+𝑒𝑚𝑖𝑛

2
           (1) 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=0ahUKEwinmcOOntvRAhUFfxoKHQQ3CqsQFgggMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS1876610216309729&usg=AFQjCNFayfH-ugjd3_DDVLALK7bOmws2Jg&cad=rja
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=0ahUKEwinmcOOntvRAhUFfxoKHQQ3CqsQFgggMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS1876610216309729&usg=AFQjCNFayfH-ugjd3_DDVLALK7bOmws2Jg&cad=rja
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The value of ℎ1is calculated using the following relation and this operation continues until h1(t) 

value become less than the desirable amount d1 (𝑑1(𝑡) <∈ ). 

 

   ℎ1(𝑡) = 𝑥(𝑡) −  𝑚1𝑑1(𝑡) < ∈         (2) 

 

If ℎ1(𝑡) meets two following conditions, the first function is considered to be the intrinsic mode 

function 𝐼𝑀𝐹1, otherwise the stages are repeated until the above condition is satisfied so that the first  

𝐼𝑀𝐹 is obtained. 

 

First condition: In the entire data set, the number of extrema and the number of zero crossings of 

signal must differ at most by one.  

Second condition: The mean value of the local maximum and minimum domain at any point of 

the signal must be equal.  

4. The residual is calculated from the following relationship: 

 

    𝑟1(𝑡) = 𝑥(𝑡) − 𝐼𝑀𝐹1(𝑡)           (3) 

 

By repeating this algorithm, signal components are calculated, and finally the initial signal can be 

calculated as follows: 

   𝑥(𝑡) =  ∑ 𝑐𝑖(𝑡) + 𝑟𝑛(𝑡)𝑛
𝑖=1           (4) 

Where, 𝑟𝑛 is the residual component, n is the number of IMFs, and 𝑐𝑖 is the intrinsic mode 

function (IMF).  Through decomposing signal, the high-frequency and low-frequency components 

are obtained whose combination reconstructs the original signal.  The created IMF components have 

a lower frequency at each stage compared to the previous one.  Obtaining IMFs is known as “sifting 

process” or “screening”.  This process continues unless the standard deviation parameter restricts it. 

Standard deviation is obtained via two methods: 

a: Through the following relation: 

   𝑆𝐷 =  ∑
(ℎ𝑘−1(𝑡)− ℎ𝑘(𝑡))2

ℎ𝑘−1
2 (𝑡)

𝑇
𝑡=0           (5) 

b: The standard deviation value is usually chosen to be between 0.2 to 0.3.  

The EMD method is capable to decompose complicated signal into a set of IMFs which are 

nearly orthogonal to each other. It seems that the most important weakness of EMD method is 

“modes mixing”.  In order to solve modes mixing problem the “ensemble empirical mode 

decomposition” (EEMD) method has been proposed. This method decomposes better the IMFs 

components (Yaguo Lei., 2011). Each trial includes the results of signal decomposition plus a white 

nose of finite amplitude.  

The new method was extracted from statistical properties of white noise developed by Flandrin et 

al. (2004).  It shows that EMD method applied with white noise is a self-tuning dyadic filter bank. 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=0ahUKEwinmcOOntvRAhUFfxoKHQQ3CqsQFgggMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS1876610216309729&usg=AFQjCNFayfH-ugjd3_DDVLALK7bOmws2Jg&cad=rja
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=0ahUKEwinmcOOntvRAhUFfxoKHQQ3CqsQFgggMAA&url=http%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS1876610216309729&usg=AFQjCNFayfH-ugjd3_DDVLALK7bOmws2Jg&cad=rja


102 Javad Zarekara, Mehrdad Nouri Khajavi, Gholamhassan Payganeh 

 

 

Moreover, investigating the obtained results by Flanderin et al. (2004), shows that noise can help with 

signal analysis in EMD method (Wu et al., 2009). 

2.2  Ensemble empirical mode decomposition (EEMD) algorithm 
1. A value is considered for ensemble M and white noise intensity and m is set to 1 (𝑚 = 1).  

2. A set of white noise with certain amplitude is added to the signal under investigation and 

combined with it: 

   𝑥𝑚(𝑡) = 𝑥(𝑡) + 𝑛𝑚(𝑡)          (6), 

where 𝑛𝑚 is the 𝑚th series of added white noise to the signal.  

3. The signal 𝑥𝑚(𝑡) to which white noise added, is decomposed to I original mode functions 

using EMD method.  

a. If 𝑚 < 𝑀, then go to stage 1 and set 𝑚 = 𝑚 + 1 and repeat stages. This process 

continues every time with different noise series.  

b. The ensemble mean of 𝑎𝑖 from 𝑀 trials is calculated based on the following relation 

for each original mode function and considered as the final IMF. 

   𝑎𝑖 =  
1

𝑀
∑ 𝐶𝑖,𝑚

𝑚
𝑚=1   , 𝑖 = 1,2, … , 𝐼   𝑚 = 1,2, … , 𝑀      (7) 

3. THE PROPOSED METHOD FOR ROLLER BEARING FAULT DETECTION 
Using EEMD and artificial neural network, a method for roller bearing fault detection is 

proposed in this section. 

3.1  DATA PREPARATION 
The vibrational signals of the current study were provided from the bearing data center of Case 

Western Reserve University. In Figure 3, test bed consists of a 3-phase 2 HP (Horse Power) induction 

motor (left side), a torque sensor (center), and a dynamometer (right side) connected to a self-tuning 

coupling (center). The load amount is adjustable by dynamometer. The trial bearing keeps motor 

shaft on driver side.  Balls, inner race (ring), and outer race defects have been separately created on 

bearing SKF6205-2RS with sizes of 0.177, 0.3556, and 0.5334 mm respectively (Case Western 

Reserve University Bearing Data Center Website).  Graph of acceleration vs time obtained by this 

bearing is presented in Figure 4.  Each sample consists of 10240 data points. 

 
 

Figure 3: (a) Experimental setup (left) and 

(b) Schematic diagram of the experimental setup (right) 

(Available from the Case Western Reserve University Bearing Data Center Website) 
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Figure 4: Vibrational signals in four conditions: (a) normal Bearing, 

(b) defective bearing with inner race fault,  

(c) defective bearing with outer race fault and  

(d) defective bearing with rolling elements (balls) fault. 

3.2 VIBRATIONAL SIGNAL DECOMPOSITION USING EEMD METHOD: 
After preparing and classifying samples at previous stage, the sample signal is decomposed to 15 

IMFs using EEMD method.  Different faults modes are seen in Figures 5, 6, 7, and 8.  

 

Figure 5: IMFs of normal bearing 

 

 

 

 

 

 



104 Javad Zarekara, Mehrdad Nouri Khajavi, Gholamhassan Payganeh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: IMFs of inner race fault with fault diameter of 0.1778 mm. 

 
Figure 7: IMFs of outer race fault with fault diameter of 0.1778 mm 

 
Figure 8: IMFs of defective bearing with ball fault and fault diameter of 0.11717 mm 
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3.3 CHOOSING SENSITIVE MODE 
After obtaining IMFs for each sample, kurtosis coefficient was calculated for all 15 modes and 

then the more sensitive mode to impulse with higher kurtosis coefficient is chosen. Kurtosis 

coefficient is very sensitive to impulse and is more suitable to detect and choose the more sensitive to 

impulse mode function. Kurtosis coefficient is obtained from (Wasserman, 1989): 

   𝑥𝑘𝑢𝑟 = √
1

𝑁
∑ (𝑥𝑖 − �̅�)2𝑁

𝑖=1           (8). 

3.4 EXTRACTING TIME DOMAIN CHARACTERISTICS: 
At this stage, first, data were divided into 40 categories each of which consists of 256 data points. 

Then from each category, two characteristics of kurtosis and standard deviations were calculated and 

arrays in the form of 2˟40 and 2˟60 were made.  Standard deviation is calculated (Wasserman, 

1989): 

   𝜎 =
∑ (𝑥−�̅�)4𝑁

𝑖=1

(𝑁−1)𝜎4
           (9), 

where 𝑥 is the nth measurement in the 𝑖th IMF 𝑥; �̅� is the average of 𝑥, 𝑁 is the number of data 

points of IMF 𝑥, and 𝑖 is the number of IMFs. 

3.5 ARTIFICIAL NEURAL NETWORK DESIGN AND FORMATION 
Artificial neural networks are based on biological learning process models of human brain. 

Artificial neural networks are widely used in data analysis, patterns identification and control 

(Haykin, 1999). Multilayer perceptron (MLP) is the most common neural network. In condition 

monitoring, this kind of network is used in more than 90 % of cases. Multilayer perceptron neural 

network is composed of an input layer with source nodes, one or multiple hidden layers with 

computational nodes or neurons and an output layer. The number of nodes in the input and output 

layer depends on the input and output values. For less hidden layers and neurons, the performance 

may be inadequate. On the other hand, with a lot of hidden nodes the risk of over fitting in training 

data and weak generalization to new data exists. There are a variety of manual and systematic 

methods to choose the number of hidden layers and nodes. 

In the current research two hidden layers with 25 and 13 neurons were used.  The number of 

input layer nodes is two, which is equal to the number of statistical parameters (Kurtosis coefficient 

and standard deviation). It consists of a normal condition, three conditions related to inner race fault, 

three conditions related to outer race fault and three conditions related to rolling elements (balls) 

fault.  The network output layer includes four nodes indicating normal condition, inner race fault, 

outer race fault and rolling elements (balls) fault respectively (Figure 9).  Therefore network 

structure is considered to be [2:25:13:4].  Of course, different structures were prepared and tested by 

writing script code in MATLAB® software and finally the mentioned structure was chosen. 35% of 

data set was used for training, 10 % was used for validation and 55% for neural network testing. In the 

neural network design, the Levenberg-Marquardt (LM) algorithm and sigmoid- tangent activation 

function were used for hidden layer and linear activation function in the output layer. In order to 

determine the network efficiency the mean squared error (MSE) was used based on relation 8 

(Wasserman, 1989). 
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   𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1           (10) 

 
Figure 9: Schematic diagram of the designed MLP. 

The input data for each part of neural network is based on Table 1. 35% of data set was used for 

training, 10 % was used for validation and 55% for neural network testing. 

3.6 SYSTEM PERFORMANCE ANALYSIS USING CONFUSION MATRIX 
In general, in the classification systems, the confusion matrix is used for defect detection in order 

to determine the success rate and efficiency of these systems.  For analyzing the confusion matrix, in 

terms of the classification and bearing fault detection, four conditions are considered, including, (a) 

normal bearing, (b) defective bearing with inner race fault, (c) defective bearing with outer race fault 

and (d) defective bearing with rolling elements (balls) fault. Each of these values is shown in the 

turbulence matrix. 

 
Figure 10: Confusion matrix using a test set data (neural network output) 

As shown in Figure 10, confusion matrix is in fact a classified table for examining the correct and 

false detection modes of faults. There are four classes for output and four classes for the target.  The 

number of data in these classes is properly classified in their own classes; and, the network test 

accuracy in classifying the given classes is expressed as a percentage. 
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Table 1: The confusion matrix 

 

Actual class 

normal 
inner race 

fault 

outer race 

fault 

rolling elements 

fault 
Network 

training 

Predicted 

class 

normal 30 0 1 0 96.8% 

Inner race fault 0 48 9 5 77.4% 

Outer race fault 0 5 43 13 70.5% 

Rolling elements fault 0 7 7 42 75.0% 

Network test 100% 80% 71.1% 70% 77.6% 

In neural networks, the network performance is measured based on the mean square error. In this 

study, the selected neural network performance was 77.6%, which was 15 in Epoch and the selected 

network performance was obtained with the test data set.  The network performance is displayed in 

the Table 1.  The network efficiency in Table 1 shows that with 15 repetitions, the lowest error rate 

occurs within the network, the difference between the output matrix and the target reaches its lowest 

value. 

 
Figure 11: The least square error curve in the learning, testing, 

and validation of the MLP neural network. 

 

Table 2: Description of bearing data set. 
Bearing status Fault size 

(mm) 

Number of training and 

validation samples 

Number of 

test samples 

Normal  27 33 

Inner race fault 

0.177 18 22 

0.3556 18 22 

0.5334 18 22 

Outer race fault 

0.177 18 22 

0.3556 18 22 

0.5334 18 22 

Rolling element or ball fault 

0.177 18 22 

0.3556 18 22 

0.5334 18 22 

 

Finally, the results of this neural network are presented in Table 2.  The network accuracy of the 

test data in the normal state is high as 96.8%.  Due to the fact that the data analyzed in this study were 

obtained from an accelerometer sensor on the roller bearing of actuator shaft, the vibration of the 

inner race fault directly affects the amplitude (due to the contact of the shaft and the inner race). 
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Consequently, as expected, the network test accuracy for this data set is high as 77.40%; however, it 

is reduced to 75.00 and 70.50 for defective bearing with rolling elements (balls) faults and defective 

bearing with outer race fault as in Table 2. 

4. CONCLUSION 

Using EEMD and MLP methods and based on time domain characteristics of vibrational signal, 

an approach to detect the roller bearing status was represented in the current paper.  The vibrational 

signal data include 4 status (normal, defective inner race, defective outer race, and defective rolling 

element or ball) with diameters of 0.177, 0.3556, and 0.5334 mm were decomposed using EEMD 

method and IMFs were obtained.  Considering the roller bearing performance method, Kurtosis 

coefficient was used for choosing and filtering the sensitive to impulse modes from the entire IMFs. 

Finally, two features including standard deviation and Kurtosis were extracted from these sensitive to 

impulse modes and given to the entry of neural network.  The number of layers , transform functions, 

and the number of different neurons in the middle layer were investigated and the best result of neural 

network with 2:25:13:4 structure was obtained. This network has the mean accuracy of 78.3 % and 

not only detects the normal or defective state but also determine the fault type (defective inner race, 

defective outer race, defective roller element or ball). This algorithm is proposed to extract frequency 

domain or time frequency domain characteristics from sensitive modes. In addition, to increase 

network detection accuracy it is recommended to use this algorithm with neural networks such as 

support vector machine (SVM) or radial basis function (RBF). 
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