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Roman text still forms the significant part of Urdu Data on Internet 
and there exist ample room for improvement particularly in this domain 
of Natural Language Processing (NLP). Existing Systems for Roman to 
Urdu Transliteration possesses their own strengths but work still need to 
be done to improve their performance. The objective of this particular 
research is to build a reliable Roman to Urdu Transliteration Batch 
Processing System with least number of manual corrections required at 
the user end, thus enhancing the efficiency and reliability of existing and 
proposed transliteration systems. Parse Tree, Transliteration Tree and 
novel Heuristic function have been proposed by observing key 
characteristic of Roman Urdu language. The work has been concluded 
by giving a benchmark of the proposed solution in terms of 
computational complexity, performance, and accuracy. Correct 
transliteration with high score has been found up to 78%, with a low score 
they found to be 21% while the wrong transliteration would be only 
0.53% for all tested word. Some limitations of the algorithms which are: 
(1) Sometimes it gets the translation correct but ranks are too low to be 
within the tolerance. This can be mitigated by using a better heuristic 
function. (2) Sometimes it generates too many correct translations which 
are in principle correct but invalid when considering the context. 

 
© 2019 INT TRANS J ENG MANAG SCI TECH. 

1. INTRODUCTION 
Users from different geographical background possess a strong desire to use their own native 

language instead of English for communication purpose in an email, chat and other existing text-
based solutions.  A quick and natural solution is Transliteration i.e. using combinations of English 
alphabets that made a similar sound to their native language’s corresponding alphabet.  This NLP 
mapping problem is well known to many computer scientists and researchers have attempted to 
address the problem with varying success rate. The most notable is by author (Tafseer, 2009). In his 
paper, he proposed a Rule-based System with default substitutions as a fallback strategy which works 
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quite well in some scenarios but fails on several edge cases that he discussed in the later section of 
the paper. Other significant work in this direction has been addressed as the Soundex algorithm and 
such other Phonetic Search Algorithm (Knuth, 1975). (Rusell, 1918) (Naseem, 2004) (Faruqi, et al, 
2011). Neural Network based models are gaining popularity in every aspect of artificial intelligence 
and researchers have also attempted to orient themselves in this direction as demonstrated by encoder-
decoder neural approach for Roman-Urdu to Urdu Transliteration. The model used by Google’s 
GBoard still seems to a black box to many researchers (Alam and Hussain, 2011).  Authors in 
(Hellsten et. al., 2017) explained that Google’s GBoard model is working on the basis of finite-state 
transducers.  Bilal et al. (2016) apply the various machine learning models for sentiment analysis of 
Roman Urdu blogs. The goal in this paper is to provide a solution in the form of a plug-in library 
which allows end users to convert a large amount of roman text into popular Urdu text with least 
number of manual error corrections. The solution thus provides convenience to developers to enable 
this functionality from the get-go in their application without worrying for the inner working details 
of the algorithm. We make some assumptions about the scenarios in which this system will be used. 
(1) The text to be transliterated belongs to the target language (Urdu) only. This means that words 
that are from language but spoken in Urdu anyway are not considered to be input to the algorithm. 
Any occasion of such inputs giving correct output should be considered a mere coincidence. (2) We 
also make some tradeoffs in speed and accuracy to favor the accuracy of the proposed algorithm while 
sacrificing some speed. Target speed is still kept reasonable for practical use cases. Rest of the paper 
is organized as follows. Section 2 outlines the required data to perform this study and describes the 
techniques used to collect and clean the data and challenges that arose during the process. Section 3 
describes various linguistic analytical techniques to spot meaningful patterns in the Roman and Urdu 
language that could be leveraged in the design of the algorithm. Section 4 illustrates the proposed 
algorithm that was developed with the help of information collected in Section 2 and also provide 
some examples to further clarify the workings of its internals. Finally, Section 5 contains the results 
and findings from running the algorithm on the Roman data. The paper concludes with a thorough 
benchmark of the performance, accuracy, and limitations of the algorithm. Moreover, it presents some 
paths to be taken to further improve the algorithm. 

2. DATA AND PREPROCESSING REQUIREMENTS 
Data is one of the most crucial requirement while designing a reliable algorithm. In our case, the 

available datasets are either very small or they are incomplete. The incomplete and small nature of 
data led us to formulate a strategy for acquiring Roman and Urdu data. Since the web has a fairly 
large number of websites that use the Roman script as their primary medium of written information. 
We decided to write a scraper that can scrape roman text from the web.  Related code snippet can be 
found in the Appendix in the end. A large amount of Urdu data was also needed to train and validate 
the model. Se we collected that data from well-known sources:  https://www.wikipedia.ur, 
https://www.hamariweb.pk, https://www.urdupoint.pk, and  https://www.cle.org.  Fortunately, not 
much effort was required to clean up the data from these sources. In fact, the last source had the 
cleanest data of them all ready to be used for training and testing. The next step was to remove the 
noise from acquired data i.e. remove non-roman data that made it through into the compiled corpus.  

https://www.wikipedia.ur/
https://www.hamariweb.pk/
https://www.urdupoint.pk/
https://www.cle.org/
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3. STATISTICAL ANALYSIS OF ROMAN AND URDU DATA 
The main statistical properties of linguistic data are Emission, Terminal, and Transitional 

Frequencies. Other important properties are Transitional and Word Length Distribution. 

3.1 ANALYSIS OF ROMAN DATA 

3.1.1 EMISSION FREQUENCIES 

Knowledge of the probabilities, of which letters occurring at the start of a word is important and 
is referred to as emission frequency. Emission frequencies of roman have been shown in Figure 
1which shows that there are several letters that are highly likely to occur at the start of the word along 
with some letters that rarely ever occur at the start of the word. 

3.1.2 TERMINAL FREQUENCIES 

The frequency of a letter occurring at the end of a word in a language is said to be terminal 
frequency. This characteristic helps a prediction algorithm to forecast how likely it is that the word 
may have ended on a particular alphabet. The graph in Figure 2. shows the terminal frequencies of 
the Roman Urdu corpus. The Graph clearly shows that there are several letters that are highly likely 
to occur at the end of the word along with some letters that rarely ever occur at the end of the word 
for e.g. likely occurring set includes: { a, e, i, o, y } this makes sense because many verbs in Urdu 
end with vowel like “utho”,  “khao” and “khelo” when used in sentences. There seem some 
exceptions which will occur rarely for e.g. { c, f, g, p, q }. 

3.1.3 TRANSITIONAL FREQUENCIES 

Every language has the property that some letters are more likely to occur after some letters while 
less likely to occur after other letters. In order to spot this structure in the Roman language, we ran 
our algorithm through a python script and acquired a 26 x 26 transition matrix. This matrix is 
converted into a heatmap image shown in Figure 3 for better readability. In heat map image yellow 
color means the most frequent, green means moderately frequent and purple means less frequent 
occurrence of the transition. It is quite clear from the picture that the most dominant bigrams are ha, 
ar, ia, ka and ay. 

3.1.4 TRANSITIONAL DISTRIBUTION 

Now we know that some bigrams are more likely and some are don’t but we still want to know 
how to balance this division i.e. the likelihood of occurrence is distributed linearly or not. So we 
sorted the frequencies as shown in Figure 4. It can be observed from the curve that transition 
frequencies show an exponential distribution and the more likely combinations dominate heavily on 
the less likely combinations. This is, in fact, a known phenomenon dubbed as Zipf law. This property 
of a language is of significant importance because this bias affects the occurrence of bigrams in our 
proposed solution and search space will dramatically decrease. 

3.1.5 WORD LENGTH DISTRIBUTION 

Designing a Transliteration Algorithm also looks into the possibility that: how long will be the 
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encountered word. In order to find that, a script ran through the corpus and counted the words with 
lengths from 1 to 16 and plotted the frequencies as shown in Figure 5. One can observe that this is a 
left-skewed Gaussian distribution (Moisl, 2009). It means that there are rarely ever used words which 
are more than 12 characters long. This will be an important aspect to consider when developing the 
actual algorithm. 

 
Figure 1: Emission Frequencies of Words in Corpus 

 

 
Figure 2: Terminal Frequencies of words in Corpus. 

 

 
Figure 3: Transitional Frequencies of bigrams Figure 4: Exponential Transitional Distribution 

3.2 ANALYSIS OF URDU DATA 
The same procedure has been opted for analysis of Urdu Data and corresponding graphs for 

Emission Frequencies, Terminal Frequencies, Transition Frequencies, Transitional Distribution, and 
Word length distribution has been plotted and presented in Figure 6 till Figure 10. The numbers are 
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used for plotting convenience. The order in which the numbers are assigned to the alphabets is 
outlined in the Appendix in the end. Figure 6 and Figure 7 shows that most Urdu Words has started 
from starting alphabets in Urdu and the same is true for terminal frequencies in Urdu. This is not the 
case with English alphabets and they seem to scattered and appeared at regular intervals in search 
space. Beside frequency analysis, it has been observed from Urdu Data Heat map that there are many 
dark purple areas. What it means is, that there are some transitions that would never occur in Urdu 
language. This key observation and knowledge can be used to cut of search space branches to make 
any transliteration algorithm faster. 

 
Figure 5: Gaussian distribution.               Figure 6: Urdu emission frequencies 

 
Figure 7: Terminal frequencies in Urdu data 

 
Figure 8: Heat Map for transitional frequencies of Urdu Data. 
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4. PROPOSED ALGORITHM DESCRIPTION  
The Proposed algorithm consists of two main concepts which are not very evident from the 

algorithm directly. These are: (1) Parse Tree Generation (2) Transliteration Space tree (3) Heuristic-
Based Searching. The very first thing that algorithm is the Generation of a parse tree from a Roman 
word. It simply slides a window on the roman string with a width value of 1 and 2 and records the 
branching as shown in Figure 9 for the word “ghar”. We intentionally chose this ambiguous word to 
demonstrate the ability of the algorithm to get all right combinations. i.e. “g-h-a-r” , “gh-a-r”. Note 
the use of dollar sign which reflects the start of an input string.  

 
Figure 9: Parse tree generation. 

 
Table 1: Transliteration space tree sample. 

Alphabet Translation 
g ج غ گ 
h ح ه ه 
a ع ے ا ء آ $ 
r ر 

gh غ 
 

After extraction of possible phoneme combinations for transliteration, we can move on to build 
the transliteration tree. For this purpose, we have a handcrafted transliteration map object. A partial 
object sufficient for the demonstration of an example given in Table 1. The complete object 
description can be found in the Appendix in the end. We create a tree with an empty root node and 
then take phonemes one by one and put their translation from the map onto the tree by increasing 
depth level each time. While doing so we keep updating the remaining word i.e. the suffix. A fully 
constructed tree for the word “ghar” is shown in Figure 10 (a) and Figure 10(b). As you can see in 
Figure 10(a), that proposed algorithm will find all possible translations. The key strength of the 
algorithm is that it will “NEVER” miss a correct transliteration but will contain a lot of wrong 
translations. Let’s calculate how much combinations it has to go through. Let s be the string to be 
transliterated. Let n be the length of the string s. Let the 𝑖𝑖𝑡𝑡ℎ be chthe aracter in the string. Let  be 
the substitution array for the 𝑖𝑖𝑡𝑡ℎ  character in the string. Let |𝑡𝑡𝑖𝑖| be the length of .  If the total 
possible translations is denoted by 𝑘𝑘 then its computation can be expressed as following product 
formula.  For example, in our case, the possible paths are calculated as 2 × 3 × 5 × 2 = 60.  As we 
can see this number can go up to thousands for large strings for which we introduce the greedy 
heuristic search in the next section for efficient path unfolding. 

   𝑘𝑘 = ∏ |𝑡𝑡𝑖𝑖|𝑛𝑛
𝑖𝑖=0             (1) 

Now we have established the crude form of algorithm to improve the performance of the function.  
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The key idea can be expressed in these words: “Keep track of the growth of the branches via a scoring 
function that scores in proportion to the likelihood of the branch transition occurring in a real word 
which was learned from the collected Urdu data.” 

 
 

Figure 10 (a): Transliteration Tree for Roman Word Ghar 
 

 
Figure 10 (b): Leaf Nodes of Transliteration Tree for Roman Word Ghar 

 
This is, in fact, a well-known technique in the field of Artificial Intelligence. Such scoring 

function is called a Heuristic function. In order to design a good scoring function, we must know the 
factors that contribute to the good solution being found. For this purpose, we can observe many 
important characteristics in the Roman language. Some of which are: (1) Even when one English 
phoneme translates to Urdu phoneme there is a significant bias towards a particular choice. For 
example, g can be used for both گ and ج but in practice, there is a significant bias towards using it 
only for the prior one. (2) When a biography phoneme occurs it is less likely to be translated as two 
separate uni-graphic phonemes like ch, gh, kh. This means when a bi-graphic phoneme gh occurs in 
a word it is highly likely that it will correspond to the Urdu letter. Keeping in mind above points and 
already computed transition matrix we built a heuristic function like below. 

         (2), 
where Ai is emission frequency of the i-th character, Zi is terminal frequency of the i-th character Ui 
is the i-th urdu character, Ri is the i-th roman character, trans(a, b) is the transition frequency from 
character a to character b, bias(j, k) is the bias of substitution map from roman character to urdu 
character. Putting in all together, the algorithm pseudocode has been provided in Table 3. Might be 
readers feel and notice some of the steps were omitted. That is due to the redundancies in the process 
which were identified and removed to improve the performance of the algorithm. Some key changes 
for optimality are: (1) We merged the process of parsing and translation into one by keeping track of 
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the remaining suffix in the node of the translation tree. (2) We actually got rid of the tree data structure 
and replaced it with the DFS algorithm using a stack. (3) We omit the branches that are of the lowest 
score after every iteration. With the implementation of the above optimization techniques, we saw a 
significant improvement in the runtime complexity and memory consumption of the algorithm. After 
the implementation, we ran the algorithm on the data we collected in the earlier sections as well as 
some fabricated data and made observations of whether the algorithm performs as expected. A 
description of data and variables has been provided in Table 2 as they will be used to describe 
algorithm pseudocode. 

Table 2: Variables and Data to be used in the Proposed Algorithm 
Terminology Description Terminology Description 

[] 1D Array T Transition frequencies of Urdu 
[] [] 2D Array or Matrix A emission frequencies of Urdu 
{} hash map Z terminal frequencies of Urdu 
R results H heuristic function for decision of 

expansion of path in the tree 
- - M Map containing handcrafted substitution 

values for English phonemes to Urdu 
phonemes 

Table 3: The proposed heuristic-based algorithm for Roman to Urdu transliteration. 
DATA : 
R[] , T[][] , A[] , Z[] ,H() ,M{} 
Node : { 
  suffix : roman string 
  score : 0 

  translation : empty string 
} 
STEPS : 

1. initialize an empty stack with the above Node 
2. while the stack is not empty 

a. pop node n from the stack 
b. if n.suffix has 0 length 

  add to results 
  continue 

c. let u <- n.suffix[0] 
d. let sub <- M[u] 

for each s in sub: 
1. push new node stack with { 

  suffix : n.suffix[1:] 
  trans +: s 
  score +: Heuristic Function 
} 

e. let b <- n.suffix[0:2] 
f. let sub <- M[u] 

for each s in sub: 
1. push new node stack with { 

  suffix : n.suffix[2:] 
  trans +: s 
  score +: Heuristic Function 
} 

3. sort the results by score 
4. for r in results : 

 if r.score < threshold 
   drop r 

 

5. RESULTS AND DISCUSSION 
We tested the algorithm on a variety of input lengths and plotted the runtime complexity of the 

algorithm. The x-axis represents the input length and Y-axis represents a number of a second required 
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to complete the translation for 100 words. Figure 11 shows that although the complexity is almost 
exponential even then the proposed algorithm is fast enough in practical scenarios. Table 4 contains 
some examples of the algorithms Accuracy. Notice that the algorithms translated all the words 
correctly but in the last two cases of maloom and jadeed it ranked the word a little lower than 
expected. This is a shortcoming of the heuristic function. Mitigations of which are suggested in the 
improvement section. We also tested that the proposed algorithm is decent enough for batch 
processing use with almost never making a mistake. Correct transliteration with high score has been 
found up to 78%, with a low score they found to be 21% while the wrong transliteration would be 
only 0.53% for all tested words.   

 
Figure 11: Performance is measured in terms of Processed Words per milliseconds. 

 
Table 4: Performance demonstration table. 

tum  }39:  طم} , {  61:  ڻم} , {  77:  طوم} , {  106:  ڻوم, {  } 266:  تم{ } ,  334:  توم { 

phool  : 373} , { پھول :  383} , { پھوول :  395} , { پہول :  395} , { پہول :  405{ پہوول  {
} ,  336} , { پحول :  338} , { پھؤول :  346} , { پحوول :  352, { پہؤول :  } 373: پھول { , 

} , {  294} , { پہل :  296} , { پھوؤل :  318} , { پہوؤل :  323} , { پحؤول :  336{ پحول : 
 } 272} , { پہؤؤل :  272} , { پہؤل :  272پہؤل : 

maloom  : 920} , { مالؤوم :  961} , { مالوؤم :  992{ مالوم :  } , 992} , { مالوم :  1002{ مالووم 
 } , 739} , { معلووم :  886} , { مالؤؤم :  886} , { مالؤم :  886} , { مالؤم :  915} , { مالم : 

} , {  712} , { ملوم :  712} , { ملوم :  722} , { ملووم :  729, { معلوم :  } 729: معلوم { 
} ,  658} , { مءلووم :  663} , { مےلووم :  664} , { مآلووم :  681ملوؤم :  } , { 698معلوؤم : 

} ,  653} , { مےلوم :  653} , { مےلوم :  654} , { مآلوم :  654} , { مآلوم :  657{ معلؤوم : 
 } 652{ معلم : 

jadeed  : 370} , { جادےڈ :  370} , { جادےد :  388} , { جادعد :  478} , { جادیڈ :  482{ جادید 
} , {  357} , { جادءڈ :  357} , { جادءد :  357} , { جادڈ :  362} , { جادد :  365} , { جادعڈ : 

 }  299, { جےدید :  } 302: جدید {  } , 314} , { جعدیڈ :  318جعدید : 

6. CONCLUSION 
An efficient algorithm for Roman to Urdu Transliteration has been proposed in the form of a 

library for developers to facilitate their users with transliteration as a feature. All the source code and 
the documentation can be found in the open source repository of the project at Qazi (2017a).  All 
computed results can also be found in the CSV and JSON format at Qazi (2017b).  Correct 
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transliteration with high score has been found up to 78%, with a low score they found to be 21% 
while the wrong transliteration would be only 0.53% for all tested word. In future augmentation of 
the proposed algorithm with a recurrent neural network more specifically an LSTM to maintain a 
sense of context. Genetic algorithms can be used as a second option to evolve heuristic function with 
collected data instead of trying to handcraft it. 

7. APPENDIX 
1. Data extraction Code Snippets 

a. Generate Transition Frequencies 

https://github.com/devqazi/roman-urdu/blob/master/scripts/build_frequency_map.py 

b. Collect Emission Frequencies 

https://github.com/devqazi/roman-urdu/blob/master/scripts/emission_frequencies.py 

c. Collect Terminal Frequencies 

https://github.com/devqazi/roman-urdu/blob/master/scripts/terminal_frequencies.py  

2. Data Visualization Code Snippets 

a. Visualize Transition Frequencies 

https://github.com/devqazi/roman-urdu/blob/master/scripts/visualize_freq.py  

b. Visualize Emission Frequencies 

https://github.com/devqazi/roman-urdu/blob/master/scripts/visualize_emissions.py  

c. Visualize Terminal Frequencies 

https://github.com/devqazi/roman-urdu/blob/master/scripts/visualize_terminals.py  

d. Visualize Empty Bigrams 

https://github.com/devqazi/roman-urdu/blob/master/scripts/visualize_empty_bigrams.py  

e. Visualize Frequency Distribution 

https://github.com/devqazi/roman-urdu/blob/master/scripts/visualize_freq_dist.py  
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