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This research investigates the Shuttle Radar Topography Mission 

(SRTM) Version 3 Global 30m produced by The National Aeronautics and 

Space Administration (NASA). As one of the free download data sources 

from the internet, it is widely used for topographic mapping with the global 

scale of accuracy from North America and Europe test sites. However, 

there is lack of local accuracy assessment and verification for SRTM data 

as in Southeast Asia and Thailand due to the absence of Global Positioning 

System (GPS) benchmarks used as sources of Ground Control Points 

(GCP). This research used GNSS L-band global correction service 

ATLAS® (Hemisphere) for building the GPS trajectory as a source of 

GCP for assessment and improving the accuracy of SRTM Version 3 data. 

The result shows that absolute vertical accuracy was achieved less than 

Vertical RMS 1.3 meters in comparing with relative vertical RMS 8.7 

meters in Euro-Asia continent accuracy scale as announced in SRTM data 

specification. These results and method can be useful for engineers who 

apply DEMs for various applications such as updating the topographic map 

for landscape design and rural-urban development project in Thailand. 
© 2019 INT TRANS J ENG MANAG SCI TECH. 

1. INTRODUCTION 
Digital elevation models (DEMs) are one of the most important sources for topographic 

mapping, land survey and human settlement development (Debella-Gilo and Kaab, 2011), 

Nowadays, there are some free sources data of DEM can be freely downloaded from the internet. 

Therefore, there is an increased need for information about its quality and improvement the accuracy 

of the DEM for various modeling and mapping applications (Mukherjee et al., 2013). 
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DEM errors may have occurred during data acquisition of the remotely sensed data such as space 

platform and DEM generation and production. To value the accuracy for DEM, previous studies 

compare the DEM elevation measurement with the high-accuracy DEM such as light detection and 

ranging data (Toutin 2004), ground control points (GCPs) from topographic maps (Zhao et al., 2011) 

or field-surveyed data with Differential GPS (Suwandana et al., 2012).  Shuttle Radar Topography 

Mission (SRTM) elevation data derived from a C-band (at a wavelength of 5.6 cm) interferometric 

ScanSAR is available at a resolution of 1 arc-second (or 1” x 1”), that is approximately 30m x 30m the 

rest of the world and can be download from USGS (2014). 

The United States National Geospatial-Intelligence Agency (NGA) and the National Aeronautics 

and Space Administration (NASA) conducted an accuracy evaluation by collecting ground truth that 

for the global validation and the results of this SRTM data as relative Height Root Mean Square 

(RMS) error as 8.7 m for the Europe-Asia continent accuracy scale (Rodriguez et al. 2006). Since the 

continent-wide contains many countries that have not sufficient numbers of GPS benchmarks for 

different topographic conditions (Rodriguez et al. 2006), some similar studies have been conducted 

locally by using GPS with accuracy range from 0.5 m to 10 m accuracy (Mouratidis et al. 2010; 

Suwandana et al. 2012; Santillana and Makinano 2016).  

 

 
Figure 1: Topographic map of the study area with L-Band GNSS data collection points. 

(Courtesy of USGS EROS/NASA EOSDIS) 

 

The L-Band ATLAS Global Navigation Satellite System (GNSS) system is a Global Based 

Augmentation System (GSBAS) that has been developed by Hemisphere GNSS Technology. This 

service enhanced real-time orbit and clock generation, dual redundant delivery of corrections from 

ground reference network via commercial communication satellites. Now-a-day, GNSS 

dual-frequency (L1/L2) single receiver is conducted in L-Band ATLAS system by static and dynamic 
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positioning measurement modes. By single dual-frequency GNSS receiver, user world-wide can get 

higher positioning measurement at less than 10 centimeters (Hemisphere GNSS, 2017).  An L-band 

Atlas GNSS system experiment was conducted for accuracy assessment in Thailand (Anantakarn and 

Witchayangkoon, 2019). 

This study uses the L-Band ATLAS GNSS system by dynamic positioning measurement mode 

for elevation data collection to evaluate and adjust SRTM data in Kaeng Kachan, Petchaburi 

province, Thailand. The area is easy to access with dynamic topographic features from low to high 

land that is feasible for financial budget and time limitation of the study. 

2. THE STUDY AREA 
The study area is located about 170 km southwest of Bangkok and between highway no. 3499 

and 3510 as shown in Figure 1. This area as 325.887 sq. km consists of different terrain characteristics 

as elevation range from 20 to 460 meters with mixed urban, rural and forest zone land use where is 

typical urban expansion such as Kaeng Krachan real estate development project. The study area was 

selected because of its varied terrain ranges and accessibility with travel cost and time-saving. 

3. METHODOLOGY 

3.1 EQUIPMENT AND SOFTWARE 
For was used and L-Band ATLAS GNSS data collection, the HEMISPHERE S321+ GNSS 

SMART ANTENNA installed on top of the off-road car as shown in Figure 2.  The 

HEMISPHERE S321 receiver includes L1/L2 frequencies for GNSS satellite as GPS (the United 

State of America), GLONASS (Russia), GALILEO (European) and BEIDOU (China) that receive 

Real-Time L-Band Correction Services (Hamisphere 2017). The GNSS Handheld Controller is 

UNISTRONG UG905 Tablet with Android OS Version 5.1.1 which operate Surveying data 

collection Software SurPad For Android V3.0.20180410 produced by Hemisphere GNSS 2018. 

The free open-source Quantum GIS (QGIS) Version 3.2 and SAGA Version 2.3.2 was used for 

DEM and GIS data analysis, available from https://qgis.org/en/site. 

 
Figure 2: HEMISPHERE S321GNSS RECEIVER on top of the off-road car 
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3.2 METHODOLOGY 
The main methodology aims to evaluate and adjust SRTM version 3 by using field data 

collection as Real-Time L-Band Correction Services that illustrated in Figure 3. 

3.2.1 SRTM ELEVATION DATA 

SRTM elevation data is available at a resolution 30 x 30 m with Earth Gravitational Model 1996 

(EGM96) vertical (geoid) datum was downloaded from the USGS website (2014). 

After Downloading, the SRTM Ver.3 data WGS 84 Latitude and Longitude with degree decimal 

unit that was converted into 30 x 30 m pixel size with map projection UTM Zone 47 North by using 

QGIS Ver 3.2 Software. The data is in GeoTIFF format as the sixteen-bit signed integer with width 

682 pixels and Height 507 pixel as 325.887 sq. km. This data was compared with L-Band GNSS data 

for accuracy analysis and improvement. 

SRTM Ver.3 Median Filter: the elevation values in DEM data comprises the height of the tree 

canopies, the roof of house and buildings as well as man-made features and so-called Digital Surface 

Model (DSM) (Miliaresis and Delikaraoglou 2009). These features caused data error as noises or 

peak values that could be removed by using low-pass filters (Pierce et al. 2006). In this study, the 

Median Filter with kernel size 7 x 7 was applied to SRTM data by using Raster Tool of QGIS – 

SAGA Version 2.3.2. After filtered, for the SRTM median filtered data was compared with L-Band 

GNSS data for evaluating the accuracy and adjusting improvement. 

 
Figure 3: Methodology for SRTM Ver.3 and GNSS Data Processing and Analysis 

3.2.2 L-BAND GNSS DATA 

The HEMISPHERE S321+ GNSS SMART ANTENNA installed on top of the off-road car and 

set for dynamic Real-Time L-Band Atlas Correction Services with the common map projection WGS 

84 UTM zone 47 North that automatically recorded for 10-m interval as shown as black color points 

in Figure 1. During November 23 -24, 2018 field data collection, trajectory length is about 80 km 

during the two days. The speed of the vehicle was controlled at the speed of lower 40 km per hour to 

archive the stability and safety of the antenna to collect measurements in every 10 meters.  

Check GNSS data accuracy: In order to archive high positioning coordinate GNSS 

measurements, horizontal and vertical RMS error over 30cm were rejected and not applied as a 

source of GCP and CP (Suwandana et al. 2012; Elkhrachy 2017).   

Ground Control Point (GCP) and Check Point (CP) selection: For matching with SRTM data 

resolution at 30-meter pixel size, L-Band GNSS measurements were used for GCP (1969 points) by 
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resampling for 30-m distance and for CP (592 points) by selecting 100-m distance interval 

(Mouratidis et al. 2010; Dong et al. 2015) as presented in Figure 4. 

 
Figure 4: Selection of GCPs and CPs 

 

3.2.3 CORRELATION ANALYSIS AND DEM ADJUSTMENT  

SRTM Ver.3 Data in Raster 16-bit integer for both raw data and the median-filtered digital value 

was extracted from the co-registered GNSS point by using Point Sampling Tool Plugin QGIS Ver. 

3.2. for correlation analysis and comparison SRTM data with GNSS field data. Correlation describes 

the strength of an association between two variables and is completely symmetrical (Li et al., 2013; 

Dong et al., 2015), the correlation between the elevation of SRTM raw data and SRTM median 

filtered data and L-Band GNSS data is needed to analyses.  

3.2.4 DEM ACCURACY IMPROVEMENT 

The correlation coefficient R is measured shows a relation between the two data sets. The results 

of the analysis can be applied to SRTM Ver.3 data as “regional regression model” to improve the 

accuracy of the topographic survey. 

4. RESULTS AND DISCUSSIONS 
The main goal of statistical analysis is to calculate the regression equation to improve the 

accuracy of SRTM Ver.3 Data. 

4.1 RESULTS 
In this study, a free global SRTM was investigated by comparing with reference elevation data 

from Real-Time L-Band Atlas Correction Services. After the removal DEM error by using median 

filter the elevation RMS error is reduced (17.7 cm) from 2.205 meters to 2.028 as seen the Table 1. 

 

Table 1: Statistic results for improvement SRTM data 

Different from 

GNSS 

Raw 

SRTM 

Filtered 

SRTM 

Adjusted 

SRTM 

Adjusted 

Filtered 

SRTM 

Min -8.375 -5.375 -9.043 -6.391 

Max 14.367 13.367 11.125 10.373 

RMS 2.205 2.028 1.597 1.301 

STDev (RSE) 1.733 1.520 1.426 1.093 

The systematic errors of SRTM data were decreased by using the correlation equation as a 

regional regression model for adjusting the DEM. After adjusting the filtered SRTM data, elevation 

RMS error is reduced 29.6 cm (from 1.597 meters to 1.301 meters as seen the Table 1).  

4.2 DISCUSSION 

The error correlations between the L-Band GNSS data and the SRTM data are generated. To 
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improve the accuracy of the correlation, we use the value for the entire study area in the GNSS data as 

the control variable to perform a partial correlation between the GNSS data and original SRTM raw 

data and the SRTM filtered data. The difference between GNSS trajectory, SRTM raw data and 

median filtered data of the study area are shown in Figure 5. After median filtering (7x7 kernel), some 

noises from SRTM raw data were removed as visually resulted in SRTM filter data and it is smoother 

and similar to GNSS data clearly in the enlargement box. 

As a result of a large number of points (1969) used to determine the error correlations, the 

correlation coefficient R is close to 1.0 in those comparisons. The fitted linear equations demonstrate 

that there are small vertical errors between GNSS data with SRTM median filtered data and the 

correlation coefficient R = 0.9938 as illustrated in Figures 6 and 7.  With the regression model, the 

outcome indicates that the two datasets showed strong positive correlations with the L-Band GNSS 

elevations. 

Total 592 checkpoints are applied for the final accuracy assessment and the relative frequency 

distribution of the height differences between reference data and examined SRTM raw and filtered 

data is provided in Figure 8. 

 

 
Figure 5: The difference between GNSS trajectory, SRTM raw data, and median filtered data 

 

 

 
Figure 6: Vertical comparison between GNSS data with SRTM 
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Figure 7: Vertical comparison between GNSS data with SRTM, applied with a median filter. 

 

 

 
Figure 8: The histograms of elevation differences of the final accuracy assessment  

The histograms of elevation differences present the adjusted data slightly move to zero for both 

SRTM raw and filtered data which indicates that the best accuracy archive clearly as SRTM filtered 

data. 

5. CONCLUSION 
L-Band GNSS elevations as reference data, the statistical computation for the relative vertical 

accuracy of SRTM Ver. 3 elevations data for the study site gave the vertical RMS 1.093 m in 

comparing with vertical RMS 8.7 meters in Euro-Asia continent accuracy scale as announced in 

SRTM data specification. 
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