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Designing feasible and cost-effective control interventions for the 
eradication of epidemic diseases is a daunting task. Mathematical 
modelling and control system theory provide efficient tools that can be 
employed to analyse and understand the dynamics of the disease and its 
control. Nevertheless, finding optimal control strategies for epidemic 
models is cumbersome, owing to the stringent need for balancing the 
dissenting demands of the control goal and minimising the cost of 
implementing the control actions. This study proposed the application of 
optimal control theory to a Tuberculosis (TB) model with slow and fast 
progression, seeking to reduce or eliminate the prevalence of TB and 
minimise the cost of implementation of the control. The optimal controls 
are characterised using the Pontryagin maximum principle and solved 
numerically. Moreover, a cost-effectiveness analysis is performed by 
using an incremental cost-effectiveness ratio (ICER). The results indicated 
that disease control policy that combined vaccine, case finding and case 
holding interventions would successfully curtail the prevalence of TB. 
Disciplinary: Epidemiology, Biocomputing, Medical Science (Public 
Health). 
©2020 INT TRANS J ENG MANAG SCI TECH. 

1. INTRODUCTION 
Over the decades, epidemic diseases have been a leading cause of billions of deaths. For this 

purpose, the entire world is making an effort to avoid the outbreak of the disease, such as the new 
Corona Covid19 pandemic. Improving public health is among the priority of the united nation’s 2030 
sustainable development goals (SDGs) (UN, 2019). 

Tuberculosis, also known as TB is one of the world’s life-threatening diseases, with over 10 
million cases of infection as of 2018, and an estimate of 1.2 million incidences of death among the 
infected population. SDG goal 3.3 contains a plan to end the TB epidemic by 2030 (WHO, 2019). TB 

©2020 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies 



2 Rabiu Aliyu Abdulkadir, Parvaneh Esmaili 

 
 

disease usually starts in the body of a susceptible person with infection by Mycobacterium 
tuberculosis (MTB) (Jumbo et al., 2013). The transmission of the disease is mostly through air breath 
between healthy and infected individuals. Common symptoms of TB include fever, weight loss and 
coughing blood (Baba et al., 2019). TB can also be contracted through co-infection with other 
diseases such as HIV (WHO, 2015). The understanding of TB epidemiology is cumbersome, which 
makes the design and implementation of control measures complicated (Nematollahi et al. 2020).  

The frequently used method for the treatment of TB includes vaccination of the susceptible 
individuals to prevent infection and further spread of the disease; treatment of latently infected 
individuals through “case finding” to avoid reactivation and treatment of the patient with active TB 
through “case holding” to guarantee adherence to treatment (Gomes et al., 2007). 

Mathematical modelling and control system theory provide efficient tools that can be employed 
to analyse and understand the dynamics of the disease and its control. Also, to access the performance 
and cost-effectiveness of several control strategies employed in eradicating the diseases (Metcalf et 
al., 2015; Xin et al., 2019; Zaman et al., 2017). In this regard, a large number of mathematical models 
have been proposed in the literature (Chalub & Souza, 2011; Giamberardino & Iacoviello, 2018; 
Heesterbeek et al., 2015; Li, 2015; Matthew & Keeling, 2008; Metcalf et al. 2015; Zhang & Zhou, 
2012). However, modelling and control of epidemic diseases like other natural phenomena are quite 
challenging. Developing reliable control algorithm for epidemic models is cumbersome due to the 
inherent non-linearity, system complexity, modelling uncertainties, parameter variations. Moreover, 
finding optimal control strategies for epidemic models is cumbersome, owing to the stringent need for 
balancing the dissenting demands of the control goal and minimising the cost of implementing the 
control actions. (Bather et al., 1976). 

In 2006, Mccluskey (2006) introduced a nonlinear TB model, considering the fact that TB 
transmission exhibit slow and fast progression from susceptible to infected class. The system uses 
SEI compartmental epidemic model as 

  

⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛬𝛬 − 𝛽𝛽𝛽𝛽𝛽𝛽 − µ𝛽𝛽
dE
𝑑𝑑𝑑𝑑

= (1 − 𝑝𝑝)𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜅𝜅𝜅𝜅 − µE
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜅𝜅𝜅𝜅 − dI − µI

            (1), 

where the population is separated into three compartments depending on the epidemiological status:  
individuals that are healthy but can contract the disease categorised as susceptible class 𝛽𝛽(𝑡𝑡), 
exposed class 𝜅𝜅(𝑡𝑡) containing individuals that have been in contact with the infected class but did 
not yet show any symptoms and the infectious class 𝛽𝛽(𝑡𝑡) representing the individuals with active TB. 
It is assumed that the rate of the disease transmission to susceptible individuals is bilinear 𝛽𝛽𝛽𝛽𝛽𝛽, with a 
fraction 𝑝𝑝 undergoing fast progression to the infectious compartment, and the remaining (1 − 𝑝𝑝) 
exhibiting slow progress into the exposed class. It is considered that the time taken by the exposed 
individuals to move to the infectious class follows an exponential distribution, with average waiting 
time 1 𝑘𝑘⁄ . The exposed class is assumed to have latent TB which can be cured and removed upon 
receiving adequate treatment; else they will progress to the infectious class. The system parameters, 
along with their meanings, are summarized in Table 1. 
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Table 1: Parameter description as presented in (Mccluskey, 2006) 
Parameter Symbol Parameter description 

𝛬𝛬 Overall recruitment into a susceptible compartment 
µ Natural death rate 
d Disease induced death rate 
𝛽𝛽 Disease transmission coefficient 
𝑝𝑝 A fraction of newly infected individuals that exhibit fast progression to infectious compartment 
𝜅𝜅 The rate at which exposed individuals moved to the infectious compartment 

 

For model (1) using the concept of a next-generation matrix (Brauer, 2017), the basic 
reproduction number was found to be 

  ℛ0 = Λ𝛽𝛽(𝜅𝜅+𝑝𝑝𝑝𝑝)
𝑝𝑝(𝑝𝑝+𝑑𝑑)(𝑝𝑝+𝜅𝜅)              (2). 

They showed and proved that the disease would be eradicated by itself if ℛ0 < 1 and linger 
otherwise. Based on that, the basic reproduction number, ℛ0, helps in understanding the dynamics of 
the disease and can be used to recommend or plan TB control programs. Nevertheless, they did not 
examine time-dependent control strategies and cost-effectiveness of the control methods, since their 
study had been focused on the global stability analysis and prevalence of TB at equilibria.  

The current study explores the potential application of optimal control theory and 
cost-effectiveness analysis on a TB model with slow and fast progression. Hence, the research aimed 
at finding the most suitable and cost-effective control interventions for the eradication of the TB 
epidemic. The optimal control analysis is based on the indirect application of Pontryagin’s maximum 
principle, and the cost-effective analysis is expressed through the use of incremental 
cost-effectiveness ratio (ICER). 

2. OPTIMAL CONTROL PROBLEM 
This section described the optimal control system for the SEI model of TB transmission with fast 

and slow progression studied in Mccluskey (2006). The optimal control theory is applied along with 
time-dependent controls to identify the best control strategies under which the TB could be controlled 
or eliminated. Three control interventions 𝑢𝑢1(𝑡𝑡), 𝑢𝑢2(𝑡𝑡) and 𝑢𝑢3(𝑡𝑡) are incorporated into the system 
model (1). The control 𝑢𝑢1(𝑡𝑡), denote the vaccination given to a fraction of the susceptible individuals 
to provide them with immunity from the disease. The control 𝑢𝑢2(𝑡𝑡), denotes a “case finding” control 
effort that is applied to identify and cure a fraction of exposed populations, to minimise the rate of 
migration from the exposed compartment to infectious. And finally, “case holding control” 𝑢𝑢3(𝑡𝑡), 
signifies the control effort that ensures the effective treatment of the infected. The optimal controls 
𝑢𝑢1(𝑡𝑡), 𝑢𝑢2(𝑡𝑡) and 𝑢𝑢3(𝑡𝑡) are assumed to be bounded, integrable, Lesbesgue functions with values in 
the closed set [0,1]. By employing similar parameters as in model (1), the optimal control model can 
be written as 
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⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛬𝛬 − 𝛽𝛽𝛽𝛽𝛽𝛽 − �µ + 𝑢𝑢1(t)�𝛽𝛽
dE
𝑑𝑑𝑑𝑑

= (1 − 𝑝𝑝)𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜅𝜅𝜅𝜅 − �µ + 𝑢𝑢2(t)�E
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜅𝜅𝜅𝜅 − dI − �µ + 𝑢𝑢3(t)�I

          (3), 

with a set of system state variables 𝑋𝑋(𝑡𝑡) = �𝛽𝛽(𝑡𝑡),𝜅𝜅(𝑡𝑡), 𝛽𝛽(𝑡𝑡)� and the objective functional to be 
minimised, defined as 

  𝐽𝐽(𝑢𝑢1 ,𝑢𝑢2, 𝑢𝑢3) = ∫ �𝑎𝑎1𝜅𝜅(𝑡𝑡) + 𝑎𝑎2𝛽𝛽(𝑡𝑡) + 𝑤𝑤1

2
𝑢𝑢12(𝑡𝑡) + 𝑤𝑤2

2
𝑢𝑢22(𝑡𝑡) + 𝑤𝑤3

2
𝑢𝑢32(𝑡𝑡)�𝑑𝑑𝑓𝑓

0 𝑑𝑑𝑡𝑡     (4). 

The main objective is to reduce or eliminate the prevalence of TB in both the latent and active 
classes, also minimise the cost of implementation of the control actions. As indicated in (4), the total 
cost of the control includes the disease-induced cost and the cost of vaccination and control 
interventions. It is assumed that the cost of the interventions is nonlinear and quadratic, as in (Baba et 
al., 2019; Gao & Huang, 2018).  The positive coefficients 𝑎𝑎1, 𝑎𝑎2 ,𝑤𝑤1, 𝑤𝑤2 and 𝑤𝑤3 are nonnegative 
weights related to the exposed population, infected population and control measures, respectively.  

The problem is to find the optimal controls 𝑢𝑢1∗, 𝑢𝑢2∗ and  𝑢𝑢3∗ along with an equivalent set of state 
variables 𝑋𝑋∗ = (𝛽𝛽∗,𝜅𝜅∗, 𝛽𝛽∗)  over the fixed time interval �0, 𝑡𝑡𝑓𝑓� , that minimises the objective 
functional (5) subject to the control systems dynamic constraints (3) as: 

  𝐽𝐽(𝑋𝑋∗,𝑢𝑢1∗ ,𝑢𝑢2∗) = minΨ 𝐽𝐽(𝑋𝑋, 𝑢𝑢1, 𝑢𝑢2,𝑢𝑢2)            (5), 

with 
Ψ = �𝑋𝑋 ∈ 𝑊𝑊1.1��0, 𝑡𝑡𝑓𝑓�;ℝ3�, (𝑢𝑢1 ,𝑢𝑢2, 𝑢𝑢3) ∈ 𝐿𝐿1��0, 𝑡𝑡𝑓𝑓�;  ℝ��𝑋𝑋(0) ≥ 0,𝑎𝑎𝑎𝑎𝑑𝑑 (3) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠𝑎𝑎𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑑𝑑� 

3. OPTIMAL CONTROL ANALYSIS 

3.1 EXISTENCE OF THE OPTIMAL CONTROL 
Theorem 1. There exist optimal controls 𝑢𝑢1∗ ,𝑢𝑢2∗  𝑎𝑎𝑎𝑎𝑑𝑑 𝑢𝑢3∗  and associated optimal solution, 

𝛽𝛽∗, 𝜅𝜅∗, 𝛽𝛽∗ to the problem (5). 
 
Proof: This theorem can be proved by adopting the conditions stated in Theorem 4.1 and 

Corollary 4.1 from Bather et al. (1976) and verifying the nontrivial conditions. Let 𝜑𝜑��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� 
represent the right-hand side of (3), the following conditions should be satisfied to prove the existence 
of the optimal control solutions. 

I. 𝜑𝜑 is of class 𝐶𝐶1 and there exists a constant 𝜁𝜁 such that  
|𝜑𝜑(0, 0, 𝑡𝑡)| ≤ 𝜂𝜂, 

   �𝜑𝜑𝑋𝑋�⃗ ��⃗�𝑋, , 𝑢𝑢�⃗ , 𝑡𝑡�� ≤ 𝜂𝜂(1 + |𝑢𝑢�⃗ |), and 

   �𝜑𝜑𝑢𝑢��⃗ ��⃗�𝑋, ,𝑢𝑢�⃗ , 𝑡𝑡�� ≤ 𝜂𝜂; 
II. The admissible set ℱ of all solutions to system (3) along with associated control in Ψ is 

nonempty; 

III. 𝜑𝜑��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� = 𝑎𝑎��⃗�𝑋, 𝑡𝑡� + 𝑏𝑏��⃗�𝑋, 𝑡𝑡�𝑢𝑢�⃗ ; 
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IV. The optimal control set 𝑈𝑈 = �0,𝑢𝑢1𝑚𝑚𝑚𝑚𝑚𝑚
� × �0, 𝑢𝑢2𝑚𝑚𝑚𝑚𝑚𝑚

� × �0,𝑢𝑢3𝑚𝑚𝑚𝑚𝑚𝑚
�  is closed, compact and 

convex; 
V. Th the objective functional integrand is convex in 𝑈𝑈. 

 

By writing 𝜑𝜑��⃗�𝑋, 𝑢𝑢�⃗ , 𝑡𝑡� as in (6), it is evident that 𝜑𝜑��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� is of class 𝐶𝐶1 and |𝜑𝜑(0, 0, 𝑡𝑡)| = Λ. 

  𝜑𝜑��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� = �
𝛬𝛬 − 𝛽𝛽𝛽𝛽𝛽𝛽 − �µ + 𝑢𝑢1(t)�𝛽𝛽

(1 − 𝑝𝑝)𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜅𝜅𝜅𝜅 − �µ + 𝑢𝑢2(t)�E
𝑝𝑝𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜅𝜅𝜅𝜅 − dI − �µ + 𝑢𝑢3(t)�I

�          (6). 

Also,  

  �𝜑𝜑𝑋𝑋�⃗ ��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡�� = ��
−𝛽𝛽𝛽𝛽 − µ − 𝑢𝑢1 0 −𝛽𝛽𝛽𝛽

(1 − 𝑝𝑝)𝛽𝛽𝛽𝛽 −𝜅𝜅 − 𝜇𝜇 − 𝑢𝑢2 (1− 𝑝𝑝)𝛽𝛽𝛽𝛽
𝑝𝑝𝛽𝛽𝛽𝛽 𝜅𝜅 𝑝𝑝𝛽𝛽𝛽𝛽 − 𝑑𝑑 − µ − 𝑢𝑢3

��, and 

  �𝜑𝜑𝑢𝑢��⃗ ��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡�� = ��
−𝛽𝛽 0 0
0 −𝜅𝜅 0
0 0 −𝛽𝛽

��. 

Owing to the boundedness of the state variables 𝛽𝛽, 𝜅𝜅 and 𝛽𝛽, there exist a constant 𝜂𝜂 such that  

  |𝜑𝜑(0, 0, 𝑡𝑡)| ≤ 𝜂𝜂, �𝜑𝜑𝑋𝑋�⃗ ��⃗�𝑋, ,𝑢𝑢�⃗ , 𝑡𝑡�� ≤ 𝜂𝜂(1 + |𝑢𝑢�⃗ |), and �𝜑𝜑𝑢𝑢��⃗ ��⃗�𝑋, , 𝑢𝑢�⃗ , 𝑡𝑡�� ≤ 𝜂𝜂. 

Hence, the first condition is satisfied. 
It can be deduced from condition (I), for constant control, there exists a unique solution to the 

system (3). It follows that condition (II) holds. 

Furthermore, 𝜑𝜑��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� can be expanded as 

  

𝜑𝜑��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� = �
𝛬𝛬 − 𝛽𝛽𝛽𝛽𝛽𝛽 − �µ + 𝑢𝑢1(t)�𝛽𝛽

(1 − 𝑝𝑝)𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜅𝜅𝜅𝜅 − �µ + 𝑢𝑢2(t)�E
𝑝𝑝𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜅𝜅𝜅𝜅 − dI − �µ + 𝑢𝑢3(t)�I

�

                   = �
𝛬𝛬 − 𝛽𝛽𝛽𝛽𝛽𝛽 − µ𝛽𝛽

(1 − 𝑝𝑝)𝛽𝛽𝛽𝛽𝛽𝛽 − 𝜅𝜅𝜅𝜅 − µE
𝑝𝑝𝛽𝛽𝛽𝛽𝛽𝛽 + 𝜅𝜅𝜅𝜅 − dI − µI

� + �
−𝛽𝛽 0 0
0 −𝜅𝜅 0
0 0 −𝛽𝛽

� × �
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
�

  

Therefore, condition (III) also holds. Conditions (IV) and (V) can be investigated by verifying 

the convexity of the integrand over the objective functional 𝑎𝑎��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡�. The convexity is satisfied if 
for any two control vectors 𝑢𝑢�⃗  and  �⃗�𝑣 and a constant 𝜌𝜌 ∈ [0, 1] 

  (1 − 𝜌𝜌)𝑎𝑎��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� + 𝜌𝜌𝑎𝑎��⃗�𝑋, �⃗�𝑣 , 𝑡𝑡� ≥ 𝑎𝑎��⃗�𝑋, (1− 𝜌𝜌)𝑢𝑢�⃗ + 𝜌𝜌�⃗�𝑣, 𝑡𝑡�        (7) 

Where 

  𝑎𝑎��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� = 𝑎𝑎1𝜅𝜅(𝑡𝑡) + 𝑎𝑎2𝛽𝛽(𝑡𝑡) + 𝑤𝑤1

2
𝑢𝑢12(𝑡𝑡) + 𝑤𝑤2

2
𝑢𝑢22(𝑡𝑡) + 𝑤𝑤3

2
𝑢𝑢32(𝑡𝑡)  
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Considering the LHS of (7), we have 

 (1 − 𝜌𝜌)𝑎𝑎��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� + 𝜌𝜌𝑎𝑎��⃗�𝑋, �⃗�𝑣 , 𝑡𝑡� = 𝑎𝑎1𝜅𝜅(𝑡𝑡) + 𝑎𝑎2𝛽𝛽(𝑡𝑡) + 

  (1 − 𝜌𝜌) �𝑤𝑤1

2
𝑢𝑢12(𝑡𝑡) + 𝑤𝑤2

2
𝑢𝑢22(𝑡𝑡) + 𝑤𝑤3

2
𝑢𝑢32(𝑡𝑡) � + 𝜌𝜌 �𝑤𝑤1

2
𝑣𝑣12(𝑡𝑡) + 𝑤𝑤2

2
𝑣𝑣22(𝑡𝑡) + 𝑤𝑤3

2
𝑣𝑣32(𝑡𝑡) � 

And the RHS of Equation (7) gives 

 𝑎𝑎��⃗�𝑋, (1 − 𝜌𝜌)𝑢𝑢�⃗ + 𝜌𝜌�⃗�𝑣, 𝑡𝑡� = 𝑎𝑎1𝜅𝜅(𝑡𝑡) + 𝑎𝑎2𝛽𝛽(𝑡𝑡) + 𝑤𝑤1

2
[(1− 𝜌𝜌)𝑢𝑢1 + 𝜌𝜌𝑣𝑣1]2 + 

  𝑤𝑤2

2
[(1− 𝜌𝜌)𝑢𝑢2 + 𝜌𝜌𝑣𝑣2]2 + 𝑤𝑤3

2
[(1− 𝜌𝜌)𝑢𝑢3 + 𝜌𝜌𝑣𝑣3]2  

It follows that 

(1 − 𝜌𝜌)𝑎𝑎��⃗�𝑋,𝑢𝑢�⃗ , 𝑡𝑡� + 𝜌𝜌𝑎𝑎��⃗�𝑋, �⃗�𝑣, 𝑡𝑡� − 𝑎𝑎��⃗�𝑋, (1− 𝜌𝜌)𝑢𝑢�⃗ + 𝜌𝜌�⃗�𝑣, 𝑡𝑡�
= 𝑤𝑤1

2
[(1− 𝜌𝜌)𝑢𝑢12 + 𝜌𝜌𝑣𝑣12] + 𝑤𝑤2

2
[(1− 𝜌𝜌)𝑢𝑢22 + 𝜌𝜌𝑣𝑣22] + 𝑤𝑤3

2
[(1 − 𝜌𝜌)𝑢𝑢32 + 𝜌𝜌𝑣𝑣32]

    −𝑤𝑤1

2
[(1− 𝜌𝜌)𝑢𝑢1 + 𝜌𝜌𝑣𝑣1]2 − 𝑤𝑤2

2
[(1− 𝜌𝜌)𝑢𝑢2 + 𝜌𝜌𝑣𝑣2]2 − 𝑤𝑤3

2
[(1 − 𝜌𝜌)𝑢𝑢3 + 𝜌𝜌𝑣𝑣3]2

= 𝑤𝑤1

2
{(1 − 𝜌𝜌)𝑢𝑢12 + 𝜌𝜌𝑣𝑣12 − [(1− 𝜌𝜌)𝑢𝑢1 + 𝜌𝜌𝑣𝑣1]2} + 𝑤𝑤2

2
{(1 − 𝜌𝜌)𝑢𝑢12 + 𝜌𝜌𝑣𝑣12 − [(1− 𝜌𝜌)𝑢𝑢1 + 𝜌𝜌𝑣𝑣1]2}

     +𝑤𝑤3

2
{(1 − 𝜌𝜌)𝑢𝑢22 + 𝜌𝜌𝑣𝑣22 − [(1− 𝜌𝜌)𝑢𝑢3 + 𝜌𝜌𝑣𝑣3]2}

= 𝑤𝑤1

2
{𝜌𝜌(1 − 𝜌𝜌)(𝑢𝑢1 − 𝑣𝑣1)2} + 𝑤𝑤2

2
{𝜌𝜌(1− 𝜌𝜌)(𝑢𝑢2 − 𝑣𝑣2)2} + 𝑤𝑤3

2
{𝜌𝜌(1 − 𝜌𝜌)(𝑢𝑢3 − 𝑣𝑣3)2}

≥ 0,

   

Consequently, both conditions (IV) and (V) are satisfied, and the proof is completed. 

3.2 OPTIMAL CONTROL SYSTEM CHARACTERISATION 
It has been proved in Section 3.1 that there exist the optimal controls that minimise the functional 

(5) subject to the system dynamic (3). The necessary conditions for this control can be drive by 

employing the Pontryagin’s Maximum Principle (PMP) (Pontryagin et al., 1962). Following PMP, 

the control 𝑢𝑢1∗, 𝑢𝑢2∗   and  𝑢𝑢3∗  with equivalent states variables 𝑋𝑋∗  are optimal and minimises the 

objective functional (5) for a fixed final time 𝑡𝑡𝑓𝑓, if the following conditions hold: 

1. The optimality condition 

  

⎩
⎪
⎨

⎪
⎧
𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜆𝜆)

𝜕𝜕𝑢𝑢1
= 0

𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜆𝜆)
𝜕𝜕𝑢𝑢2

= 0
𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜆𝜆)

𝜕𝜕𝑢𝑢3
= 0                                

           (8) 

2. The optimal control system 

  

⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜆𝜆)
𝜕𝜕𝜆𝜆1

𝑑𝑑𝐸𝐸
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜆𝜆)
𝜕𝜕𝜆𝜆2

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜆𝜆)
𝜕𝜕𝜆𝜆3
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3. The co-state system 

  

⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝜆𝜆1
𝑑𝑑𝑑𝑑

= − 𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜆𝜆)
𝜕𝜕𝑑𝑑

𝑑𝑑𝜆𝜆2
𝑑𝑑𝑑𝑑

= − 𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜆𝜆)
𝜕𝜕𝐸𝐸

𝑑𝑑𝜆𝜆3
𝑑𝑑𝑑𝑑

= − 𝜕𝜕𝜕𝜕(𝑋𝑋,𝑢𝑢1,𝑢𝑢2,𝑢𝑢3,𝜆𝜆)
𝜕𝜕𝑑𝑑

            (9) 

4. The minimisation conditions 

  𝐻𝐻(𝑋𝑋∗,𝑢𝑢1∗ ,𝑢𝑢2∗ ,  𝑢𝑢3∗ , 𝜆𝜆∗) = min0≤𝑢𝑢≤1 𝐻𝐻(𝑋𝑋∗,𝑢𝑢1, 𝑢𝑢2,𝑢𝑢3, 𝜆𝜆∗), holds for 𝑡𝑡 ∈ [0, 𝑡𝑡𝑓𝑓]. 

5. And the transversality conditions are also holds 

  𝜆𝜆𝑖𝑖�𝑡𝑡𝑓𝑓� = 0, 𝑠𝑠 = 1,2,3             (10) 

With the function 𝐻𝐻 (Hamiltonian function) defined as 

  

𝐻𝐻(𝑋𝑋, 𝑢𝑢1, 𝑢𝑢2,𝑢𝑢3, 𝜆𝜆) = 𝑎𝑎1𝜅𝜅(𝑡𝑡) + 𝑎𝑎2𝛽𝛽(𝑡𝑡) + 𝑤𝑤1

2
𝑢𝑢12(𝑡𝑡) + 𝑤𝑤2

2
𝑢𝑢22(𝑡𝑡) + 𝑤𝑤3

2
𝑢𝑢32(𝑡𝑡)

                                       +𝜆𝜆1�𝛬𝛬 − 𝛽𝛽𝛽𝛽𝛽𝛽 − �µ + 𝑢𝑢1(t)�𝛽𝛽�                                     
                                       + 𝜆𝜆2�(1− 𝑝𝑝)𝛽𝛽𝛽𝛽𝛽𝛽 − 𝑘𝑘𝜅𝜅 − �µ + 𝑢𝑢2(t)�E� 
                                       + 𝜆𝜆3�𝑝𝑝𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑘𝑘𝜅𝜅 − dI − �µ + 𝑢𝑢3(t)�I�

 

Theorem 2: There exist co-state variables 𝜆𝜆1∗(𝑡𝑡), 𝜆𝜆2∗(𝑡𝑡), 𝜆𝜆3∗(𝑡𝑡),   given the optimal solution,

𝛽𝛽∗, 𝜅𝜅∗, 𝛽𝛽∗ and associated control 𝑢𝑢1∗ ,𝑢𝑢2∗  𝑎𝑎𝑎𝑎𝑑𝑑 𝑢𝑢3∗ that minimises 𝐽𝐽(𝑋𝑋,𝑢𝑢1 ,𝑢𝑢2,𝑢𝑢3) over Ψ, such that 

⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝜆𝜆1
𝑑𝑑𝑑𝑑

= 𝜆𝜆1∗(𝑡𝑡)[𝛽𝛽𝛽𝛽∗(𝑡𝑡) + µ + 𝑢𝑢1∗(𝑡𝑡)] − 𝜆𝜆2∗ (𝑡𝑡)(1− 𝑝𝑝)𝛽𝛽𝛽𝛽∗(𝑡𝑡) − 𝜆𝜆3∗ (𝑡𝑡)𝑝𝑝𝛽𝛽𝛽𝛽∗(𝑡𝑡)
𝑑𝑑𝜆𝜆2
𝑑𝑑𝑑𝑑

= 𝜆𝜆2∗ (𝑡𝑡)[µ + 𝑘𝑘 + 𝑢𝑢2∗(𝑡𝑡)] − 𝑎𝑎1
𝑑𝑑𝜆𝜆3
𝑑𝑑𝑑𝑑

= 𝜆𝜆1∗(𝑡𝑡)𝛽𝛽𝛽𝛽∗(𝑡𝑡) − 𝜆𝜆2∗(𝑡𝑡)(1 − 𝑝𝑝)𝛽𝛽𝛽𝛽∗(𝑡𝑡) − 𝜆𝜆3∗(𝑡𝑡)[𝑝𝑝𝛽𝛽𝛽𝛽∗(𝑡𝑡) − 𝑑𝑑 − µ − 𝑢𝑢3∗(𝑡𝑡)]− 𝑎𝑎2

     (11). 

Together with transversality conditions 

  𝜆𝜆𝑖𝑖∗�𝑡𝑡𝑓𝑓� = 0, 𝑠𝑠 = 1,2,3              (12) 

Equally, the piecewise characterization of the continuous optimal control function is given as: 

𝑢𝑢1∗(𝑡𝑡) = 𝑚𝑚𝑠𝑠𝑎𝑎 �𝑚𝑚𝑎𝑎𝑚𝑚 �0, 𝜆𝜆1
∗(𝑑𝑑)𝑑𝑑∗(𝑑𝑑)
𝐵𝐵1

� , 1�

𝑢𝑢2∗(𝑡𝑡) = 𝑚𝑚𝑠𝑠𝑎𝑎 �𝑚𝑚𝑎𝑎𝑚𝑚 �0, 𝜆𝜆2
∗(𝑑𝑑)𝐸𝐸∗(𝑑𝑑)
𝐵𝐵2

� , 1�

𝑢𝑢3∗(𝑡𝑡) = 𝑚𝑚𝑠𝑠𝑎𝑎 �𝑚𝑚𝑎𝑎𝑚𝑚 �0, 𝜆𝜆3
∗(𝑑𝑑)𝑑𝑑∗(𝑑𝑑)
𝐵𝐵3

� , 1�

                       (13)  

 

Proof: The co-state system (11) and the optimal control characterisation (13) are obtained from 
the explicit application of conditions (9) and (8) of the Pontryagin’s Maximum Principle, 
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respectively. The optimal control (13) is unique over an adequately short final time 𝑡𝑡𝑓𝑓, the Lipschitz 
property and boundedness of the state (3) and co-state (11) systems (3) and (9) and boundedness of 
the state and co-state functions (Bather et al., 1976). 

The overall optimality system encompasses the system (3) and its initial conditions, the co-state 
system (11) along with transversality conditions (12), and the optimal control characterisation (13):  

 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛬𝛬 − 𝛽𝛽𝛽𝛽𝛽𝛽 − �µ + 𝑢𝑢1(t)�𝛽𝛽
dE
𝑑𝑑𝑑𝑑

= (1 − 𝑝𝑝)𝛽𝛽𝛽𝛽𝛽𝛽 − 𝑘𝑘𝜅𝜅 − �µ + 𝑢𝑢2(t)�E
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑝𝑝𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑘𝑘𝜅𝜅 − dI − �µ + 𝑢𝑢3(t)�I
𝑑𝑑𝜆𝜆1
𝑑𝑑𝑑𝑑

= 𝜆𝜆1∗(𝑡𝑡)[𝛽𝛽𝛽𝛽∗(𝑡𝑡) + µ + 𝑢𝑢1∗(𝑡𝑡)] − 𝜆𝜆2∗ (𝑡𝑡)(1− 𝑝𝑝)𝛽𝛽𝛽𝛽∗(𝑡𝑡) − 𝜆𝜆3∗ (𝑡𝑡)𝑝𝑝𝛽𝛽𝛽𝛽∗(𝑡𝑡)
𝑑𝑑𝜆𝜆2
𝑑𝑑𝑑𝑑

= 𝜆𝜆2∗ (𝑡𝑡)[µ + 𝑘𝑘 + 𝑢𝑢2∗(𝑡𝑡)] − 𝑎𝑎1
𝑑𝑑𝜆𝜆3
𝑑𝑑𝑑𝑑

= 𝜆𝜆1∗(𝑡𝑡)𝛽𝛽𝛽𝛽∗(𝑡𝑡) − 𝜆𝜆2∗(𝑡𝑡)(1 − 𝑝𝑝)𝛽𝛽𝛽𝛽∗(𝑡𝑡) − 𝜆𝜆3∗(𝑡𝑡)[𝑝𝑝𝛽𝛽𝛽𝛽∗(𝑡𝑡) − 𝑑𝑑 − µ − 𝑢𝑢3∗(𝑡𝑡)]− 𝑎𝑎2
𝛽𝛽(0),𝜅𝜅(0), 𝛽𝛽(0) ≥ 0,
𝜆𝜆𝑖𝑖∗�𝑡𝑡𝑓𝑓� = 0, 𝑠𝑠 = 1,2,3    

𝑢𝑢1∗(𝑡𝑡) = 𝑚𝑚𝑠𝑠𝑎𝑎 �𝑚𝑚𝑎𝑎𝑚𝑚 �0, 𝜆𝜆1
∗(𝑑𝑑)𝑑𝑑∗(𝑑𝑑)
𝐵𝐵1

� , 1�

𝑢𝑢2∗(𝑡𝑡) = 𝑚𝑚𝑠𝑠𝑎𝑎 �𝑚𝑚𝑎𝑎𝑚𝑚 �0, 𝜆𝜆2
∗(𝑑𝑑)𝐸𝐸∗(𝑑𝑑)
𝐵𝐵2

� , 1�

𝑢𝑢3∗(𝑡𝑡) = 𝑚𝑚𝑠𝑠𝑎𝑎 �𝑚𝑚𝑎𝑎𝑚𝑚 �0, 𝜆𝜆3
∗(𝑑𝑑)𝑑𝑑∗(𝑑𝑑)
𝐵𝐵3

� , 1�

     (14) 

4. NUMERICAL SIMULATION 
In this section, numerical simulations are implemented to validate the analytic results. The 

epidemiological parameters used for the simulation are reflected in Table 2. The optimality system 
(14), is solved by employing the forward-backward sweep technique. In this technique, the state 
equations are first solved forward in time using an initial guess of the control variables and state 
variables’ initial conditions. The co-state equations are solved backward in time using the values of 
the states and control variables from the current iteration and transversality conditions. The control 
variables are then updated by using the values of the states and co-states obtained from the current 
iteration. The process is repeated until the results converged. The initial values of the state variables 
are assumed to be as 𝛽𝛽(0) = 3800, 𝜅𝜅(0) = 1800 and 𝛽𝛽(0) = 200. 

 
Table 2: Simulation parameters 

Parameter Symbol Value Unit Source 
𝛬𝛬 1000 person year-1 (Baba et al., 2019) 
µ 1

70
 

year-1 (Castillo-chavez, 2004)  

d 0.17 year-1 (Gao & Huang, 2018) 
𝛽𝛽 0.003 person-1 year-1 (Yang et al., 2016) 
𝑝𝑝 0.3 None  
𝜅𝜅 0.003 year-1 (Castillo-chavez, 2004) 
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Figure 1 illustrated the trajectories of the optimal control functions, which indicated that to 
curtail the prevalence of the TB, both the case finding 𝑢𝑢2(𝑡𝑡) and case holding 𝑢𝑢3(𝑡𝑡) control efforts 
should be maintained at the top bound throughout the entire period of the control intervention. In 
Figs. 2-3, the comparison of the populations in the case with optimal control (with 𝑢𝑢1, 𝑢𝑢2 and 𝑢𝑢3) 
and without the application of the control are depicted. Solid-blue lines identify the population 
without control interventions whereas the populations with optimal control are indicated with 
dashed-red lines. In Figure 2, the population of the susceptible to optimal control is higher than the 
case without control. Similarly, from Figs. 3 and 4 it is clear that the optimal control intervention is 
very effective as both the exposed and infected populations are successfully contained. 

 
Figure 1: Profiles of the optimal control functions. Weight constants 𝑎𝑎1 = 100, 𝑎𝑎2 = 100,𝑤𝑤1 =

1000,𝑤𝑤2 = 500 and 𝑤𝑤3 = 500. 
 
 

 
Figure 2: Significance of the optimal control of the susceptible population. 
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Figure 3: Significance of the optimal control of the exposed population. 

 

 
Figure 4: Significance of the optimal control of the infected population. 

 

 
Figure 5: Infected population trajectory under different control strategies. 
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vividly seen that the best performance is achieved by considering the three controls simultaneously. 
The least performance occurs when only 𝑢𝑢1 𝑎𝑎𝑎𝑎𝑑𝑑 𝑢𝑢2 are considered. From the numerical result at the 
final time, the total number of the infected without control is approximately 1820, and 0 when all the 
three control interventions are considered simultaneously. 

5. COST-EFFECTIVENESS ANALYSIS 
This section discussed the cost-effectiveness analysis, using an incremental cost-effectiveness 

ratio (ICER), as described in (Tilahun et al., 2017). The investigation is performed to identify the 
most suitable control strategy that balances the stringent needs of the control actions and the need to 
minimise the cost of implementation of the control interventions compared to other policies. An 
ICER gives a degree of the economic value of a particular intervention strategy in comparison to 
alternative approaches. ICER is computed as a ratio of incremental cost (difference in costs between 
two strategies) to incremental effect (difference in a total number of prevented incidences) (York, 
2016).  

As illustrated in Table 3, four control strategies are considered, with at least two control 
interventions in each (considering that single intervention is not reliable in eradicating the disease). 
These strategies are compared pairwise. The total cost of each strategy is assumed to be equal to the 
objective function cost value associated with it. Moreover, the total number of prevented cases for 
each strategy is estimated by subtracting the number of infected populations with control from those 
without control at the final time. 

Comparing the cost-effectiveness of strategies, I and II,  

𝛽𝛽𝐶𝐶𝜅𝜅𝐼𝐼(𝛽𝛽) = 41435
542

= 76  

𝛽𝛽𝐶𝐶𝜅𝜅𝐼𝐼(𝛽𝛽𝛽𝛽 𝑤𝑤𝑡𝑡ℎ 𝑎𝑎𝑎𝑎𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡 𝑡𝑡𝑡𝑡 𝛽𝛽) = (41435−80013)
(542−1790) = 31  

Which indicated that strategy II (with less ICER) is more effective compared to strategy I. Next 
strategy II is compared with strategy III as follows: 

𝛽𝛽𝐶𝐶𝜅𝜅𝐼𝐼(𝛽𝛽𝛽𝛽) = 80013
1790

= 45  

𝛽𝛽𝐶𝐶𝜅𝜅𝐼𝐼(𝛽𝛽𝛽𝛽𝛽𝛽 𝑤𝑤𝑠𝑠𝑡𝑡ℎ 𝑎𝑎𝑎𝑎𝑠𝑠𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡 𝑡𝑡𝑡𝑡 𝛽𝛽𝛽𝛽) = (80013−31953)
(1790−1568) = 216  

Similarly, a comparison between strategies II and III revealed that strategy II is more effective. 
Finally, by comparing strategies II and IV, strategy IV with ICER of −2203 appeared to be the best 
among all the four strategies. 

Table 3: comparison of the control’s combination 
Controls Strategies Infected populations at final 

time  𝛽𝛽(𝑡𝑡𝑓𝑓) 
Number of cases saved at 𝑡𝑡𝑓𝑓 Objective cost function 

value (J) 
No control 1820 NA NA 

Strategy I (𝑢𝑢1  𝑎𝑎𝑎𝑎𝑑𝑑 𝑢𝑢2) 1278 542 41435 
Strategy II (𝑢𝑢1  𝑎𝑎𝑎𝑎𝑑𝑑 𝑢𝑢3) 30 1790 80013 
Strategy III (𝑢𝑢2  𝑎𝑎𝑎𝑎𝑑𝑑 𝑢𝑢3) 252 1568 31953 

Strategy IV (𝑢𝑢1 ,𝑢𝑢2 𝑎𝑎𝑎𝑎𝑑𝑑 𝑢𝑢3) 0 1820 13917 

6. CONCLUSION 
The study proposed the potential application of optimal control theory and cost-effectiveness 
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analysis for a tuberculosis model with slow and fast progression. For this purpose, a basic TB model 
is modified by adding three optimal control functions representing vaccination, case finding and case 
holding control interventions. The objective of the control is to reduce or eliminate the prevalence of 
TB in both the latent and active classes, while simultaneously minimizing the cost of executing the 
control intervention. The uniqueness and existence of the resulting optimal control model have been 
proved using Pontryagin’s Maximum Principle. Numerical simulations were conducted using the 
fourth-order Runge Kutta method to validate the analytical results. Moreover, different control 
strategies were proposed, and their economic value and effectiveness were investigated using the 
incremental cost-effectiveness ratio. The optimal control results indicated how the use of effective 
control strategies would help in eradicating the disease. Also, the cost-effectiveness analysis implies 
that the best way to curtail the epidemic is to implement the three control interventions concurrently. 
The study can serve as a reliable tool to inform practical disease management strategies. 

7. AVAILABILITY OF DATA AND MATERIAL 
The code can be made available upon reasonable request to the corresponding author. 
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