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In this article, we propose two models for the task of conveyor 
processing of a moving extended object. As a typical situation of such 
processing, the problem of cooling the hot rolling strip on the discharge 
roller table to achieve a given winding temperature profile is 
considered. The two models under consideration correspond, firstly to 
Euler coordinates, in which the conveyor base is stationary, and, 
secondly, to Lagrange coordinates, in which the processed strip is 
motionless. In both cases, we describe the neighborhood structure for 
the model, that is, a directed graph whose vertices correspond to the 
state and control variables of the model. The advantages and 
disadvantages of each of the two models are discussed. 
Disciplinary: Mathematical Sciences. 
©2020 INT TRANS J ENG MANAG SCI TECH. 

1. INTRODUCTION 
The main motivation for this article was the well-known problem of modeling the process of 

forced cooling of the hot rolling strip on the discharge roller table by means of water shower units - 
see, for example, [1, 2, 3]. In this article, we propose and consider an abstract and largely simplified 
statement of this problem. Namely, we consider a certain abstract process of sequential handling of 
a moving extended object (in what follows - the conveyor processing of a moving strip) by 
stationary devices.  It is assumed that the properties of the strip are characterized by a one-
dimensional random process at the entrance to the conveyor and, in the general case, the strip has 
self-acting. In the original problem of cooling a hot-rolling strip, a one-dimensional random process 
is the input temperature recorded by the pyrometer, and self-interaction corresponds to internal heat 
transfer processes. We describe so called neighborhood structures (see [4, 5, 6]) for two discrete 
models of conveyor processing of the moving strip. The first model uses Euler variables associated 
with a fixed conveyor base while the strip is considered a moving part of the conveyor. In the 
second model, the Lagrange variables associated with the moving strip are used, so the processing 
devices are considered as moving objects. In subsequent publications on the basis of these 

©2020 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies 



2 Kausar Naheed, Ijaz Hussain, Khair Uz Zaman & Naimat Ullah Babar 

 
 

structures, firstly, discrete dynamic systems will be recorded and, secondly, an algorithm for 
controlling the on-off modes of processing devices depending on the random input process and on 
the processes inside the strip will be indicated. The purpose of the control is to approximate some 
predefined profile of the strip properties at the exit of the conveyor.  

2. Method Description: Neighborhood structures and systems  
Suppose we are going to build a mathematical model of a process in the form of a discrete 

control system 

  �𝑋𝑋
𝑡𝑡+1 = 𝐹𝐹(𝑋𝑋𝑡𝑡 ,𝑈𝑈𝑡𝑡)
𝑊𝑊𝑡𝑡 = 𝐶𝐶(𝑋𝑋𝑡𝑡,𝑈𝑈𝑡𝑡)

             (1) 

(see [7]).  It is convenient, in many cases, to begin with the stage of constructing a neighborhood 
structure, see [4]-[6].  The concepts of the neighborhood structure and the corresponding 
neighborhood system have arisen as a generalization of the finite differences method and are 
especially convenient in those cases when the discrete system (1) corresponding to any particular 
problem is very sparse. 

The neighborhood structure 𝔑𝔑(𝑉𝑉) over a finite set 𝑉𝑉 is a connected digraph 𝔑𝔑 = ℜ(𝑉𝑉,𝐸𝐸), 
containing vertices   𝑉𝑉 = 𝑈𝑈 ⊔ 𝑋𝑋 ⊔𝑊𝑊 of three types: inputs 𝑈𝑈, nodes 𝑋𝑋 and outputs 𝑊𝑊, while: 

o each input  𝑢𝑢 ∈ 𝑈𝑈 has only outgoing arcs of the form 𝑒𝑒(𝑢𝑢,∗), where ∗ ∈ 𝑋𝑋 ⊔𝑊𝑊; 
o each output 𝑤𝑤 ∈ 𝑊𝑊 has only incoming arcs of the form 𝑒𝑒(∗,𝑤𝑤), where ∗ ∈ 𝑈𝑈 ⊔ 𝑋𝑋; 
o each node  𝑥𝑥 ∈ 𝑋𝑋 has incoming and outgoing arcs; 
o each node 𝑥𝑥 ∈ 𝑋𝑋 can have a loop 𝑒𝑒(𝑥𝑥, 𝑥𝑥),  which is considered both as incoming and as outgoing 

arc; 

o any two nodes   𝑥𝑥′, 𝑥𝑥′′ ∈ 𝑋𝑋 can  be connected by no more than two (oppositely directed)  arcs 
𝑒𝑒(𝑥𝑥′, 𝑥𝑥′′) and 𝑒𝑒(𝑥𝑥′′, 𝑥𝑥′).   

The arcs of a neighborhood structure are also called connections or links. In the figures, the 
nodes are represented by circles, the entrances and exits by squares. All inputs  𝑈𝑈 are divided into 
two classes: internal controlled inputs 𝑈𝑈� and external uncontrolled inputs 𝑈𝑈�.    

The neighborhood system associated with the neighborhood structure 𝔑𝔑(𝑉𝑉) consists of 
equations for the nodes and outputs of the structure, such that: 

o for each input 𝑢𝑢𝑖𝑖, node 𝑥𝑥𝑖𝑖  and output 𝑤𝑤𝑖𝑖 there is a corresponding (scalar or vector) variable 𝑈𝑈(𝑖𝑖), 
𝑋𝑋(𝑖𝑖) and  𝑊𝑊(𝑖𝑖); 

o for each node 𝑥𝑥𝑖𝑖 and each output 𝑤𝑤𝑖𝑖 there is a corresponds (scalar or vector) equation; 

o the equation for each node 𝑥𝑥𝑖𝑖 contains only variables corresponding to the vertices from 𝑈𝑈 and 𝑋𝑋, 
entering this node; 

o the equation for each output 𝑤𝑤𝑖𝑖 contains only variables corresponding to the vertices from 𝑈𝑈 and 
𝑋𝑋,  entering this output.  

In the general case, the equations of a neighborhood system can be explicit or implicit, static or 
dynamic; dynamic equations can be discrete or continuous. In this paper, it is assumed that all 
equations of the neighborhood system are explicit discrete-dynamic equations of the form  
𝑋𝑋𝑡𝑡+1(𝑖𝑖) = 𝐹𝐹𝑖𝑖𝑡𝑡(∗)  (for nodes) and 𝑊𝑊𝑡𝑡(𝑖𝑖) = 𝐶𝐶𝑖𝑖𝑡𝑡(∗)  (for outputs). Depending on the presence or 
absence of a loop 𝑒𝑒(𝑥𝑥, 𝑥𝑥), the equation  𝑋𝑋𝑡𝑡+1(𝑖𝑖) = 𝐹𝐹𝑖𝑖𝑡𝑡(∗)  for the node  𝑥𝑥𝑖𝑖  contains or does not 
contain the variable 𝑋𝑋𝑡𝑡(𝑖𝑖) in the right-hand side.  

Let us explain the appearance of the superscript  𝑡𝑡 in the right-hand sides of the equations. It is 
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usually assumed that the neighborhood structure completely determines the set of variables on the 
right-hand sides of the equations, namely, this set corresponds to the existing arcs. However, in the 
case when the system is not stationary, the set of arcs and, therefore, the set of variables may 
depend on time. In our definition of a neighborhood structure, a change in arcs over time is not 
provided. The reason is that for neighborhood structures there is a natural analogue of the transition 
to an extended  phase space, which allows us to always consider only structures with constant arcs,  
i.e., as in the our definition. Unfortunately, after extension, the neighborhood structure often 
becomes too complex. This applies also to our problem, regardless of the choice of coordinate 
system, Euler or Lagrange. To simplify the exposition and drawings, we choose a compromise 
option when the structure does not expand, and instead, for each vertex, all arcs activated at any 
moment of time are considered. In order to write down the equations of a non-stationary 
neighborhood system in this case, we need additional information about arcs activated at each given 
moment of time.  We reflect this in the presence of the variable 𝑡𝑡 in  𝐹𝐹𝑖𝑖𝑡𝑡 and 𝐶𝐶𝑖𝑖𝑡𝑡. 

3. NEIGHBORHOOD STRUCTURE FOR MODEL IN EULER 
COORDINATES 
We call the Euler's model for conveyor processing a model in which the vertices and variables 

of the neighborhood structure are associated to the fixed conveyor base. 
The neighborhood structure corresponding to the Euler model of conveyor processing contains  

𝑛𝑛 + 1 = 1 + 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3  nodes  𝑥𝑥0, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛   (discretization of the conveyor base) with 
variables  𝑋𝑋(𝑖𝑖), 𝑖𝑖 = 0,1, … ,𝑛𝑛 , one external input  𝑢𝑢�  with a variable  𝑈𝑈�𝑡𝑡 , 𝑡𝑡 = 0,1, … ,𝑁𝑁, one output 
𝑤𝑤 with a variable 𝑊𝑊𝑡𝑡 , 𝑡𝑡 = 𝑛𝑛,𝑛𝑛 + 1, … ,𝑛𝑛 + 𝑁𝑁,  and 𝑛𝑛2 control inputs 𝑢𝑢�𝑛𝑛1+1, … ,𝑢𝑢�𝑛𝑛1+𝑛𝑛2with 
variables 𝑈𝑈�𝑡𝑡(𝑖𝑖), 𝑖𝑖 =  𝑛𝑛1 + 1, … ,𝑛𝑛1 + 𝑛𝑛2. The initial node 𝑥𝑥0  is connected to the input  𝑢𝑢�  that 
generates and transmits a time-dependent input state  𝑋𝑋𝑡𝑡(0) = 𝑈𝑈�𝑡𝑡 ,  t = 0,1, … ,𝑁𝑁.  Next, 𝑛𝑛1 + 1 is 
the number of starting nodes when the strip is not processed.  The next  𝑛𝑛2 nodes, from 𝑛𝑛1 + 1 to 
𝑛𝑛1 + 𝑛𝑛2, are the band processing nodes. In the final 𝑛𝑛3 nodes,  from 𝑛𝑛2 + 1  to 𝑛𝑛 = 𝑛𝑛1 + 𝑛𝑛2 + 𝑛𝑛3, 
the strip is not processed, as in the initial nodes. Above the band processing nodes there are 𝑛𝑛2 
controlled  inputs  𝑢𝑢�𝑛𝑛1+1, … ,𝑢𝑢�𝑛𝑛1+𝑛𝑛2 (which explains the rule of numbering rule for controlled 
inputs). In the case of cooling the hot rolling strip, the indicated nodes and controlled inputs 
correspond to the initial section of the discharge roller table, the section with cooling units, the final 
section of the roller table until the winding unit and the block of cooling units themselves.  Below, 
in Fig. 1, the case is shown when  𝑛𝑛1 = 𝑛𝑛2 = 𝑛𝑛3 = 2. 

The passage of the strip along the conveyor takes  𝑛𝑛 + 𝑁𝑁  discrete time moments 𝑡𝑡 = 1, … ,𝑛𝑛 +
𝑁𝑁, each time moment corresponds to a shift of the strip by one node to the right. At the initial 
moment 𝑡𝑡 = 0, the starting point of the strip located in the node 𝑥𝑥0 , at the moment 𝑡𝑡 = 𝑛𝑛 + 𝑁𝑁,  the 
ending point of the strip located in the node 𝑥𝑥𝑛𝑛. Through each node, the strip passes for 𝑁𝑁+1 time 
moments. In the general case, 𝑛𝑛 and 𝑁𝑁 can be any:  𝑛𝑛 ≤ 𝑁𝑁 or 𝑛𝑛 ≥ 𝑁𝑁. 
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Figure 1: Neighborhood structure for Euler model 

The presence of the zero-node is convenient for synchronization with discrete time: at the zero 
time moment, the beginning of the strip is in the zero node. The direction of the arrows from the 
controlled inputs down and to the right is associated with the movement of the strip, that is, the 
input 𝑢𝑢�𝑖𝑖 acts as a result of the movement not on the node 𝑥𝑥𝑖𝑖,  but on the node 𝑥𝑥𝑖𝑖+1. In addition, the 
movement of the strip is reflected in the structure of the arcs between the nodes: the action of a 
certain element of the strip on its neighbors left and right (i.e., the self-action of the strip) in the 
Euler model corresponds to a loop and incoming arrows from two neighbors to the left.  Thus, this 
non-trivial circumstance is associated with the use of the Euler coordinate system.  

In the model adapted for the problem of cooling the rolling strip, one time moment corresponds 
to a shift by a distance Δ between the centers of the shower units, the total length of the strip is 
𝑁𝑁 ⋅ Δ  and, as a rule, 𝑁𝑁 ≫ n. 

An external input (random process) 𝑈𝑈�𝑡𝑡 sets the state of the zero node: 𝑋𝑋𝑡𝑡(0) = 𝑈𝑈�𝑡𝑡 ,  𝑡𝑡 =
0,1, … ,𝑁𝑁. Further, the output of the model at time  𝑡𝑡  is given by the equation  𝑊𝑊𝑡𝑡 = 𝑋𝑋𝑡𝑡(𝑛𝑛), while 
the vector (profile) of the properties of the strip at the output corresponds to the time moments 
𝑡𝑡 = 𝑛𝑛,𝑛𝑛 + 1, … ,𝑛𝑛 + 𝑁𝑁, that is, it is a vector of dimension 𝑁𝑁 + 1: 

  𝑊𝑊 = [𝑋𝑋𝑛𝑛(𝑛𝑛),𝑋𝑋𝑛𝑛+1(𝑛𝑛), … ,𝑋𝑋𝑛𝑛+𝑁𝑁(𝑛𝑛)           (2). 

The equation for the state of a node in the general case has the form 

  𝑋𝑋𝑡𝑡+1(𝑖𝑖) = 𝐹𝐹𝑖𝑖𝑡𝑡(𝑋𝑋𝑡𝑡(𝑖𝑖),𝑋𝑋𝑡𝑡(𝑖𝑖 − 1),𝑋𝑋𝑡𝑡(𝑖𝑖 − 2),𝑈𝑈𝑡𝑡(𝑖𝑖 − 1))        (3), 

but it should be noted that, depending on the relationship between 𝑖𝑖 and 𝑡𝑡, there may be no control 
and some of the states on the right side,  and, moreover, the equation itself may be absent. For 
example, at 𝑡𝑡 = 0 and 𝑡𝑡 = 𝑛𝑛 + 𝑁𝑁, the system will consist of only one equation. 

According to [6], the neighborhood structure allows us to write down a formal system of 
equations, so called “metasystem”, associated with the structure.  We already mentioned the reason 
why we cannot do this in our case:  the neighborhood structure that is fully adequate to the dynamic 
problem under consideration is not stationary, that is, it depends on time. Such a structure must be 
described in an extended phase space, see the remarks above in section 2 and also in Section 3.1.5 
of the book [6].  An alternative option that we have chosen is that we consider a stationary 
neighborhood structure containing vertices and arcs for all moments of time, keeping in mind that at 
each particular moment in time, only part of the vertices and arcs are used to record the system. A 
full description of the system will be given in future publications. 

4. NEIGHBORHOOD STRUCTURE FOR MODEL IN LAGRANGE 
COORDINATES 
We call the Lagrange model of conveyor processing a model in which the vertices and 



*Corresponding author (Kausar Naheed). Email: naheedkosar125@gmail.com  ©2020 International Transaction Journal of 
Engineering, Management, & Applied Sciences & Technologies. Volume 11 No.7 ISSN 2228-9860  eISSN 1906-9642  CODEN: 
ITJEA8  Paper ID:11A07T  http://TUENGR.COM/V11/11A07T.pdf  DOI: 10.14456/ITJEMAST.2020.140 

5 
 
 

variables are associated with the moving strip. As in the case of the Euler model, the neighborhood 
structure that is completely adequate to the dynamic problem is not stationary. Same as before, to 
simplify the construction, we choose an alternative option when all vertices and connections are 
present simultaneously in the structure (for all time instants), but at the same time, only part of them 
are used to record the system at any particular moment in time. A detailed description of the system 
is postponed until the next publication, but some rules for including or excluding vertices and links 
depending on time will be indicated below. 

Further we will use the notation 𝑛𝑛1,𝑛𝑛2,𝑛𝑛3 and 𝑁𝑁, introduced in the previous paragraph. The 
neighborhood structure corresponding to the Lagrange model contains  𝑁𝑁 nodes with variables 
𝑋𝑋𝑡𝑡(𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁, corresponding to the discretization of the strip (not the conveyor, as in the Euler 
model), one external input with the variable 𝑈𝑈�𝑡𝑡 , 𝑡𝑡 = 0,1, … ,𝑁𝑁,  one output with the variable 
𝑊𝑊𝑡𝑡 , 𝑡𝑡 = 𝑛𝑛,𝑛𝑛 + 1, …𝑛𝑛 + 𝑁𝑁,  and  𝑛𝑛2 control inputs with variables 𝑈𝑈�𝑡𝑡(𝑖𝑖), 𝑖𝑖 =  𝑛𝑛1 + 1, … ,𝑛𝑛1 + 𝑛𝑛2. 

The external input 𝑈𝑈�𝑡𝑡 acts on all nodes, not simultaneously but sequentially: at time monent  𝑡𝑡 
on the node 𝑋𝑋𝑡𝑡(𝑖𝑖), 𝑖𝑖 = 𝑡𝑡.  Each of the control inputs 𝑈𝑈�𝑡𝑡(𝑖𝑖)  can act (or, depending on the control 
program, do not act) on each of the nodes, not simultaneously, but sequentially: at time   𝑡𝑡 =  𝑛𝑛1 +
𝑖𝑖, … ,𝑛𝑛1 + 𝑖𝑖 + 𝑁𝑁 on the node 𝑋𝑋𝑡𝑡(𝑖𝑖), 𝑖𝑖 = 𝑡𝑡.  Figure 2, the case is shown when  𝑁𝑁 = 5  and  𝑛𝑛2 = 1. 

 
Figure 2: Neighborhood structure for Lagrange model. 

In this case, the reverse numbering of nodes is convenient, from right to left: the beginning of 
the strip corresponds to the rightmost node. The constructed neighborhood structure does not 
provide information on the number of nodes of inactive parts of the conveyor 𝑛𝑛1 and 𝑛𝑛2; this 
information will only be contained in the corresponding neighborhood system. Note that the 
neighborhood structure constructed earlier for the Euler model did not contain information about 
the strip length 𝑁𝑁.  

5. CONCLUSION 
Two neighborhood structures are constructed for the conveyor processing of a moving 

extended object, corresponding to the use of Euler and Lagrange variables. Neighborhood structures 
adequate to the task are non-stationary. To simplify the constructions, an alternative option was 
chosen when the structure is stationary, but the neighborhood system is not uniquely restored by the 
structure. The connection of the discussed structures with the task of cooling the hot rolling strip to 
achieve the desired temperature profile of the winding is described. 
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