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Abstract 
We present an optimal homotopy analysis method (OHAM) to find an 
accurate approximate analytic solution (AAS) for non-linear 

fractional-order constrained optimization problem (FOCOP). The previous 
analytical approximate method (AAM) of solving FOCOP possesses no norms 
for the convergence of the infinite series solution. OHAM provides an 
independent way of choosing proper values of the control-convergence 
parameter (CCP), auxiliary linear operator, and enables us to control and 
govern the convergence area of the series solution produced by a squared 
residual error optimization technique. Numerical comparisons of OHAM with 
Runge-Kutta fourth-order (RK4) method for accuracy. Some examples from 
the CUTEr library were used to indicate the correctness and relevance of the 
suggested techniques. 
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1 Introduction 
In optimization, different methods had been considered by several authors for solving 

constrained non-linear programming optimization problems in a class of integer-order systems of 

ordinary differential equations (ODEs). The gradient-based steepest descent approach is a solution 

method. The procedure converts a non-linear problem of optimization to systems of non-linear 

ODE dynamic with optimality requirements to get optimal solutions (Franceschi et. Al., 2017). 

The computation of fractional-order began receiving much importance in the area of applied 

science some years back. Some authors in optimization focused on improving AAM for solving 
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various forms of arbitrary-order gradient-based dynamic systems from optimization problem: Such 

as a fractional dynamics trajectory approach (Evirgen and Özdemir, 2012), fractional steepest 

descent approach (Pu et al., 2013), an arbitrary gradient-based system using VIM (Evirgen, 2016), 

and a conformable fractional gradient-based system (Evirgen, 2017). 

One-step OHAM was developed by Niu and Wang (2010) for non-linear differential 

equations(NLDEs).  Liao (2010) proposed OHAM strong NLDEs to obtain an optimal convergence-

control parameter by using optimization a method called squared residual error, which was 

integrated into the whole region of the governing equation for accurate optimal convergence-

control parameters. OHAM approach has still not been implemented in solving non-linear FOCOP, 

which motivates this study. 

2 Preliminaries 
We begin by defining some particular functions and properties of fractional calculus 

(Abdeljawad,  2015). 

Definition 1 

Let 𝑔𝑔: [0,∞) → ℜ be a given function. The 𝛽𝛽𝑡𝑡ℎ order conformable fractional derivative 

operator of 𝑔𝑔 given by 

𝑇𝑇𝛽𝛽(𝑔𝑔)(𝑥𝑥) = lim
𝜖𝜖→0

𝑔𝑔(𝑥𝑥+𝜖𝜖𝑥𝑥1−𝛽𝛽)−𝑔𝑔(𝑥𝑥)
𝜖𝜖

 (1), 

∀  𝑥𝑥 > 0 and 𝛽𝛽 ∈  (0, 1]. 

Theorem 1 

The function  𝑑𝑑
𝛽𝛽𝑔𝑔

𝑑𝑑𝑥𝑥𝛽𝛽
= 𝑥𝑥1−𝛽𝛽 𝑑𝑑𝑔𝑔

𝑑𝑑𝑥𝑥
,  if 𝑔𝑔 is differentiable, 0 < 𝛽𝛽 ≤ 1, and (𝑓𝑓,𝑔𝑔) be 𝛽𝛽-   

differentiable at a point 𝑥𝑥 > 0. 

Definition 2 

Given that the integral is the regular Riemann improper, then we have 

𝐼𝐼𝑎𝑎
𝛽𝛽(𝑔𝑔)(𝑥𝑥) = 𝐼𝐼𝑎𝑎1(𝑥𝑥𝛽𝛽−1𝑔𝑔) = ∫  𝑥𝑥𝑎𝑎

𝑔𝑔(𝑡𝑡)
𝑡𝑡1−𝛽𝛽

𝑑𝑑𝑑𝑑, where t, and 𝛽𝛽 ∈  (0, 1]. 

Theorem 2 

𝑇𝑇𝛽𝛽𝐼𝐼𝑎𝑎
𝛽𝛽(𝑔𝑔)(𝑥𝑥) = 𝑔𝑔(𝑥𝑥), given that 𝑔𝑔 is a continuous function in the domain of 𝐼𝐼𝛽𝛽 and 𝑥𝑥 ≥ 𝑎𝑎. 

Theorem 3 

Let 𝑔𝑔: (𝑎𝑎,𝑏𝑏)  → ℜ be differentiable and 0 < 𝛽𝛽 ≤ 1. And so for all 𝑥𝑥>𝑎𝑎, we have 

𝐼𝐼𝑎𝑎
𝛽𝛽𝑇𝑇𝛽𝛽(𝑓𝑓)(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) − 𝑔𝑔(𝑎𝑎). 

Taking non-linear programming, constrained optimization problem (NLPCOP) of the figure  

min
𝑥𝑥∈ℜ𝑛𝑛

  𝑔𝑔(𝑥𝑥)   𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑   𝑑𝑑𝑡𝑡   𝜓𝜓𝑘𝑘(𝑥𝑥) ≤ 0  𝑎𝑎𝑎𝑎𝑑𝑑    ℎ𝑘𝑘(𝑥𝑥) = 0   ∀   𝑘𝑘 ∈ ℜ. (2), 

where 𝑔𝑔:ℜ𝑛𝑛 → ℜ,𝜓𝜓𝑘𝑘:ℜ𝑛𝑛 → ℜ, and ℎ𝑘𝑘:ℜ𝑛𝑛 → ℜ, 𝑘𝑘 ∈ ℜ, are 𝐶𝐶2 functions. Let 𝑋𝑋0 =  {𝑥𝑥 ∈ ℜ𝑛𝑛|ℎ𝑘𝑘 =
0,𝜓𝜓𝑘𝑘 ≤ 0,𝑘𝑘 ∈ ℜ} be the feasible set of Equation (2), and 𝑋𝑋0 is a set of functions. An efficient penalty 

function of Equation (2) is given as 
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𝑃𝑃𝑝𝑝𝑝𝑝𝑛𝑛𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝(ℎ𝑘𝑘(𝑥𝑥)) = 𝜚𝜚 1
𝜎𝜎
∑  𝑝𝑝
𝑘𝑘=1 (ℎ𝑘𝑘(𝑥𝑥))𝜎𝜎, (3), 

𝑃𝑃𝑝𝑝𝑝𝑝𝑛𝑛𝑎𝑎𝑝𝑝𝑡𝑡𝑝𝑝(𝜓𝜓𝑘𝑘(𝑥𝑥)) = 𝜚𝜚 ∑  𝑝𝑝
𝑘𝑘=1 (𝑚𝑚𝑎𝑎𝑥𝑥{0,𝜓𝜓𝑘𝑘(𝑥𝑥)})𝜎𝜎. (4), 

where 𝜎𝜎 = 2. It can be understood from previous research that the solution to Equation (2) is of the 

unconstrained form given as 

𝑚𝑚𝑚𝑚𝑎𝑎 𝐺𝐺(𝑥𝑥,𝜚𝜚) = 𝑔𝑔(𝑥𝑥) + 𝜚𝜚(1
𝜎𝜎
∑  𝑝𝑝
𝑘𝑘=1 (ℎ𝑘𝑘(𝑥𝑥))𝜎𝜎 + ∑  𝑝𝑝

𝑘𝑘=1 (𝑚𝑚𝑎𝑎𝑥𝑥{0,𝜓𝜓𝑘𝑘(𝑥𝑥)})𝜎𝜎) (5), 

𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑  𝑑𝑑𝑡𝑡  𝑥𝑥 ∈ ℜ𝑛𝑛   

where 𝜚𝜚 > 0 is an auxiliary penalty variable (Nguyen et al., 2019). 

Using Equation (1) and Equation (2) for problem Equation (5) with 𝜎𝜎 = 2, the conformable 

operator gradient-based dynamic model is formulated as  

𝑇𝑇𝛽𝛽𝑥𝑥𝑡𝑡 = −∇𝑥𝑥𝐺𝐺(𝑥𝑥, 𝜚𝜚). (6), 

with the given initial conditions 

𝑥𝑥𝑘𝑘(0) = 𝑥𝑥𝑘𝑘0       𝑘𝑘 = 1. . . .𝑎𝑎. (7), 

where ∇𝑥𝑥𝐺𝐺(𝑥𝑥, 𝜚𝜚) is the gradient vector and 𝑥𝑥 ∈ ℜ. This form of optimization problem solution was 

first introduced in Evirgen and Özdemir (2011). 

Note that a point 𝑥𝑥𝑝𝑝 it is an equilibrium point of Equation (6) if it correspondent to the right-hand 

side of Equation (6). We reformulate the arbitrary-order dynamic system Equation (6) as 

𝑇𝑇𝛽𝛽𝑥𝑥𝑘𝑘(𝑑𝑑) = 𝑔𝑔𝑘𝑘(𝑑𝑑, 𝜚𝜚, 𝑥𝑥1,𝑥𝑥2. . . .𝑥𝑥𝑛𝑛),   𝑘𝑘 = 1, 2. . .𝑎𝑎 (8). 

3 Methodology 
We solve Equation (8) by constructing homotopy of the form 

𝑇𝑇𝛽𝛽𝑥𝑥𝑘𝑘(𝑑𝑑) = 𝑝𝑝𝑔𝑔𝑘𝑘(𝑑𝑑, 𝜚𝜚, 𝑥𝑥1,𝑥𝑥2. . . .𝑥𝑥𝑛𝑛) (9), 

where 𝑘𝑘 = 1, 2. . . 𝑎𝑎, and 𝑝𝑝 ∈  [0, 1]. If 𝑝𝑝 = 0, Equation (9) becomes 

𝑇𝑇𝛽𝛽𝑥𝑥𝑘𝑘(𝑑𝑑) = 0. (10) 

and when 𝑝𝑝 = 1, the homotopy Equation (9) 

𝑇𝑇𝛽𝛽𝑥𝑥𝑘𝑘(𝑑𝑑) = 𝑔𝑔𝑘𝑘(𝑑𝑑, 𝜚𝜚, 𝑥𝑥1,𝑥𝑥2. . . .𝑥𝑥𝑛𝑛)     𝑑𝑑 ≥ 0,   0 < 𝛽𝛽 ≤ 1. (11) 

with given initial conditions 

𝑥𝑥𝑘𝑘(0) = 𝑎𝑎𝑘𝑘 ,   𝑘𝑘 = 1, 2. . .𝑎𝑎 (12). 

From (Liao, 2010), we formulate the zeroth-order deformation equations 

(1 − 𝑞𝑞)ℓ𝑘𝑘[𝑇𝑇𝛽𝛽𝜙𝜙𝑘𝑘(𝑑𝑑, 𝑞𝑞) − 𝑥𝑥𝑘𝑘0(𝑑𝑑)] = 𝑞𝑞ℏ𝑘𝑘[𝑇𝑇𝛽𝛽𝜙𝜙𝑘𝑘(𝑑𝑑, 𝑞𝑞) − 𝑔𝑔𝑘𝑘(𝑑𝑑,𝜚𝜚,𝜙𝜙1(𝑑𝑑,𝑞𝑞),𝜙𝜙2(𝑑𝑑, 𝑞𝑞)𝜙𝜙𝑛𝑛(𝑑𝑑,𝑞𝑞)]   
𝑘𝑘 = 1, 2. . . . . 𝑎𝑎 (13), 

where 𝑞𝑞 ∈  [0,1] is an enclosed parameter, ℓ𝑘𝑘  Are auxiliary linear operators satisfying ℓ𝑘𝑘(0) = 0, 

𝑥𝑥𝑘𝑘0(𝑑𝑑) are guessing approximation 𝑥𝑥𝑘𝑘(𝑑𝑑), ℏ𝑘𝑘 ≠ 0 are converging-control parameters, and 𝜙𝜙𝑘𝑘(𝑑𝑑, 𝑞𝑞) 

are unknown functions, when 𝑞𝑞 = 0, and 𝑞𝑞 = 1 we have 
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𝜙𝜙𝑘𝑘(𝑑𝑑, 0) = 𝑥𝑥𝑘𝑘0(𝑑𝑑),         𝜙𝜙𝑘𝑘(𝑑𝑑, 1) = 𝑥𝑥𝑘𝑘(𝑑𝑑)𝑘𝑘 = 1, 2, 3. . .𝑎𝑎 (14). 

Thus, as 𝑞𝑞 increasing from 0 𝑑𝑑𝑡𝑡 1, the solution 𝜙𝜙𝑘𝑘(𝑑𝑑, 𝑞𝑞) ranges from the initial guess 𝑥𝑥𝑘𝑘0(𝑑𝑑) to the 

solutions 𝑥𝑥𝑘𝑘(𝑑𝑑). Expand 𝜙𝜙𝑘𝑘(𝑑𝑑,𝑞𝑞) in a Taylor series for 𝑞𝑞, we have  

𝜙𝜙𝑘𝑘(𝑑𝑑,𝑞𝑞) = 𝑥𝑥𝑘𝑘0(𝑑𝑑) + ∑  ∞
𝑚𝑚=1 𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑)𝑞𝑞𝑚𝑚 (15), 

where 

𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑) = 1
𝑚𝑚!

𝜕𝜕𝑚𝑚𝜙𝜙𝑘𝑘(𝑡𝑡,𝑞𝑞)
𝜕𝜕𝑞𝑞𝑚𝑚

|𝑞𝑞=0,    (16). 

If the auxiliary linear operators ℓ𝑘𝑘, Convergence-control parameters ℏ𝑘𝑘, And the guess 

approximation 𝑥𝑥𝑘𝑘0(𝑑𝑑), are correctly selected, then the series Equation (15) converges at 𝑞𝑞 = 1, one 

has 

𝑥𝑥𝑘𝑘(𝑑𝑑) = 𝑥𝑥𝑘𝑘0(𝑑𝑑) + ∑  ∞
𝑚𝑚=1 𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑)         𝑘𝑘 = 1, 2, 3. . .𝑎𝑎 (17). 

As proposed by Odibat (2019), differentiating Equation (13) m-times with for the enclosed 

parameter 𝑞𝑞, and equating 𝑞𝑞 = 0, and finally subdivide them by 𝑚𝑚! we have the mth-order equation 

as 

ℓ𝑘𝑘[𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑) − 𝜒𝜒𝑚𝑚𝑥𝑥𝑚𝑚−1(𝑑𝑑)] = ℏ𝑘𝑘ℜ𝑘𝑘𝑚𝑚 ��⃖�𝑥𝑘𝑘(𝑚𝑚−1)(𝑑𝑑)� (18), 

where 

ℜ𝑘𝑘𝑚𝑚(�⃖�𝑥𝑘𝑘(𝑚𝑚−1)(𝑑𝑑)) = 1
(𝑚𝑚−1)!

𝜕𝜕𝑚𝑚−1

𝜕𝜕𝑞𝑞𝑚𝑚−1 [𝑇𝑇𝛽𝛽𝜙𝜙𝑘𝑘(𝑑𝑑, 𝑞𝑞) − 𝑔𝑔𝑘𝑘(𝑑𝑑, 𝜚𝜚,𝜙𝜙1(𝑑𝑑,𝑞𝑞),𝜙𝜙2(𝑑𝑑,𝑞𝑞)𝜙𝜙𝑛𝑛(𝑑𝑑, 𝑞𝑞))]   

𝑘𝑘 = 1, 2, … 𝑎𝑎 (19), 

with 

𝜒𝜒𝑚𝑚 = �0 𝑚𝑚 ≤ 1
1 𝑚𝑚 > 1.   

Multiply both sides of Equation (18) by ℓ𝑘𝑘−1 and choose 

ℓ𝑘𝑘−1 = 𝐼𝐼𝛽𝛽      𝑘𝑘 = 1, 2. .𝑎𝑎.  

We have 

𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑) = 𝜒𝜒𝑚𝑚𝑥𝑥𝑘𝑘(𝑚𝑚−1)(𝑑𝑑) + ℏ𝑘𝑘𝐼𝐼𝛽𝛽[ℜ𝑘𝑘𝑚𝑚��⃖�𝑥𝑘𝑘(𝑚𝑚−1)(𝑑𝑑)�  (20). 

The mth-order Equation (18), which is linear, can be determined by any symbolic 

computation Maple software. From Equation (20), we get a power series solution 

𝑥𝑥𝑘𝑘(𝑑𝑑) = ∑  ∞
𝑚𝑚=𝑜𝑜 𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑)     1 ≤ 𝑘𝑘 ≤ 𝑎𝑎 (21). 

When 𝑚𝑚 → ∞ in Equation (21), we can get an accurate AAS of Eq. (3.4). The traditional 

approach to get interval values for convergence-control parameters ℏ𝑘𝑘  Is to plot the ℏ𝑘𝑘-Curve by 

drawing a curve of a certain proportion versus ℏ𝑘𝑘. Afterward, it was found that the traditional 

approach could not yield optimal values as declared by (Liao, 2010), which made (Odibat, 2020) 
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suggesting an optimization method for the optimal value of CCP by using squared residual error. 

Power series solution  Equation (21) relies upon the convergence-control parameter vector. 

The squared residual error in the mth-order of AAS is given as 

Δ(ℏ1 ,ℏ2) = ∑  2
𝑗𝑗=1 ∫  Ω (𝑁𝑁𝑗𝑗[∑  𝑚𝑚

𝑘𝑘=0 𝑥𝑥1,∑  𝑚𝑚
𝑘𝑘=0 𝑥𝑥2])2𝑑𝑑Ω. (22). 

denotes the square residual error of the governing equation Equation (2) at the mth-order of 

approximation, where m=1, 2, and so on. At the first-order of an estimate, the squared residual 

error Δk are depending on ℏ𝑘𝑘  and the optimal values for ℏ𝑘𝑘  are obtained by solving  non-linear 

algebraic equations 

𝜕𝜕Δ(ℏ𝑘𝑘)
𝜕𝜕ℏk

= 0        𝑘𝑘 = 1, 2, … .𝑎𝑎.    (23). 

3.1 The Convergence Analysis 
Theorem 1. As long as the series 𝑥𝑥𝑘𝑘(𝑑𝑑) = 𝑥𝑥𝑘𝑘0(𝑑𝑑) + ∑  ∞

𝑚𝑚=1 𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑) for 𝑘𝑘 = 1, 2, 3. . . . 𝑎𝑎 converges 

where 𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑) is governed by Equation (18) under the definition Equation (19), it must be the result 

of Equation (11). 

Proof: If we consider ∑  ∞
𝑚𝑚=1 𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑) for 𝑘𝑘 = 1,2,3. . . .𝑎𝑎 converges to 𝑥𝑥𝑘𝑘(𝑑𝑑) then  

lim
𝑚𝑚→∞

𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑) = 0  ∀   𝑘𝑘 = 1, 2, . . . . 𝑎𝑎 (24). 

We can write 

∑  ∞
𝑚𝑚=1 ℏ𝑘𝑘ℜ𝑘𝑘𝑚𝑚 ��⃖�𝑥𝑘𝑘(𝑚𝑚−1)(𝑑𝑑)� = ∑  ∞

𝑚𝑚=1 ℓ𝑘𝑘[𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑) − 𝜒𝜒𝑚𝑚𝑥𝑥𝑚𝑚−1(𝑑𝑑)],     (25) 

= lim
𝑛𝑛→∞

∑  𝑛𝑛
𝑚𝑚=1 ℓ𝑘𝑘[𝑥𝑥𝑘𝑘𝑚𝑚(𝑑𝑑) − 𝜒𝜒𝑚𝑚𝑥𝑥𝑚𝑚−1(𝑑𝑑)],  (26) 

= ℓ𝑘𝑘𝑥𝑥11(𝑑𝑑) + �ℓ𝑘𝑘𝑥𝑥22(𝑑𝑑)− ℓ𝑘𝑘𝑥𝑥21(𝑑𝑑)�+ �ℓ𝑘𝑘𝑥𝑥𝑛𝑛𝑛𝑛(𝑑𝑑)− ℓ𝑘𝑘𝑥𝑥𝑛𝑛(𝑛𝑛−1)(𝑑𝑑)�, (27) 

= ℓ𝑘𝑘 � lim
𝑛𝑛→∞

∑  𝑛𝑛
𝑚𝑚=1 𝑥𝑥𝑛𝑛𝑛𝑛(𝑑𝑑)�, (28) 

= ℓ𝑘𝑘 � lim
𝑛𝑛→∞

𝑥𝑥𝑛𝑛𝑛𝑛(𝑑𝑑)� = 0    ∀    𝑘𝑘 = 1, 2, . . . .𝑎𝑎.   (29). 

Since ℏ𝑘𝑘 ≠ 0, 

ℜ𝑘𝑘𝑚𝑚 ��⃖�𝑥𝑘𝑘(𝑚𝑚−1)(𝑑𝑑)� = 0. (30) 

Hence, using the above 

∑  ∞
𝑚𝑚=1 ℜ𝑘𝑘𝑚𝑚(�⃖�𝑥𝑘𝑘(𝑚𝑚−1)(𝑑𝑑)) = ∑  ∞

𝑚𝑚=1 [𝑇𝑇𝛽𝛽𝑥𝑥𝑘𝑘(𝑚𝑚−1) − 𝑔𝑔𝑘𝑘�𝑑𝑑,𝜚𝜚,𝑥𝑥1(𝑚𝑚−1),𝑥𝑥2(𝑚𝑚−1) … . . 𝑥𝑥𝑛𝑛(𝑚𝑚−1))�  

= ∑  ∞
𝑚𝑚=1 𝑇𝑇𝛽𝛽𝑥𝑥𝑘𝑘(𝑚𝑚−1) − ∑  ∞

𝑚𝑚=1 𝑔𝑔𝑘𝑘�𝑑𝑑, 𝜚𝜚, 𝑥𝑥𝑘𝑘(𝑚𝑚−1)� (32) 

= 𝑇𝑇𝛽𝛽𝑥𝑥𝑘𝑘𝑑𝑑 − 𝑔𝑔𝑘𝑘�𝑑𝑑, 𝜚𝜚, 𝑥𝑥𝑘𝑘(𝑑𝑑)� (33). 

From Equations (30) and (33), we have 
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𝑇𝑇𝛽𝛽𝑥𝑥𝑘𝑘(𝑑𝑑) = 𝑔𝑔𝑘𝑘�𝑑𝑑,𝜚𝜚,𝑥𝑥𝑘𝑘(𝑑𝑑)�   ∀     𝑘𝑘 = 1, 2, . . . .𝑎𝑎 (36) 

4 Numerical Examples and Results 
Example 1: We consider test problem from (Schittkowski, 2012) [No 216]  

𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠   𝑔𝑔(𝑥𝑥) = 100(𝑥𝑥12 − 𝑥𝑥2)2 + (𝑥𝑥1 − 1)2 (37), 

𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑 𝑑𝑑𝑡𝑡  ℎ(𝑥𝑥) = 𝑥𝑥1(𝑥𝑥1 − 4) − 2𝑥𝑥2 + 12 = 0 (38), 

𝑥𝑥0 = (0, 0) (39), 

whose analytical solution is unknown, but the intended optimal solution is 𝑥𝑥1∗ = 1.9993,𝑥𝑥2∗ =
3.9998. From Equation (5), we have 

𝐺𝐺(𝑥𝑥,𝜚𝜚) = 100(𝑥𝑥12 − 𝑥𝑥2)2 + (𝑥𝑥1 − 1)2 + 1
2
𝜚𝜚(𝑥𝑥1(𝑥𝑥1 − 4) − 2𝑥𝑥2 + 12)2  (40). 

Similarly from Equation (6), for 𝜚𝜚 = 200 gives 

𝑇𝑇𝛽𝛽𝑥𝑥1(𝑑𝑑) = −400(𝑥𝑥12 − 𝑥𝑥2)𝑥𝑥1 − 2(𝑥𝑥1 − 1) − 𝜚𝜚(2𝑥𝑥1 − 4)(𝑥𝑥12 − 4𝑥𝑥1 − 2𝑥𝑥2 + 12) (41), 

𝑇𝑇𝛽𝛽𝑥𝑥2(𝑑𝑑) = 200(𝑥𝑥12 − 𝑥𝑥2) + 2𝜚𝜚(𝑥𝑥12 − 4𝑥𝑥1 − 2𝑥𝑥2 + 12)  0 <  𝛽𝛽 ≤ 1, (42), 

𝑥𝑥1(0) = 0,   𝑥𝑥2(0) = 0 (43). 

Chosen a linear operator of the form 

ℓ𝑘𝑘−1 = 𝐼𝐼𝛽𝛽, 𝑘𝑘 = 1, 2. . .𝑎𝑎,  

According to the formula Equation (19), we have 

ℜ1𝑚𝑚(�⃖�𝑥1(𝑚𝑚−1)(𝑑𝑑), �⃖�𝑥2(𝑚𝑚−1)(𝑑𝑑)) = 𝑇𝑇𝛽𝛽𝑥𝑥1[𝑚𝑚−1] − 2000∑  𝑚𝑚−1
𝑘𝑘=0 𝑥𝑥1[𝑚𝑚−1−k] ∑  𝑛𝑛

𝑗𝑗=0 𝑥𝑥1[k−j]𝑥𝑥1[j] −

9600∑  𝑚𝑚−1
𝑘𝑘=0 𝑥𝑥1[𝑚𝑚−1−k]𝑥𝑥1[K] + 32002𝑥𝑥1[𝑚𝑚−1] + 3600𝑥𝑥1[𝑚𝑚−1]𝑥𝑥2[𝑚𝑚−1] + 6400𝑥𝑥2[𝑚𝑚−1] −

38402(1 − 𝜒𝜒𝑚𝑚), (44), 

ℜ2𝑚𝑚(�⃖�𝑥1(𝑚𝑚−1)(𝑑𝑑), �⃖�𝑥2(𝑚𝑚−1)(𝑑𝑑)(𝑑𝑑) = 𝑇𝑇𝛽𝛽𝑥𝑥2[𝑚𝑚−1] − 1800∑  𝑚𝑚−1
𝑘𝑘=0 𝑥𝑥2[𝑚𝑚−1−k]𝑥𝑥2[k] − 3200𝑥𝑥1[𝑚𝑚−1] −

1800𝑥𝑥2[𝑚𝑚−1] + 9600(1− 𝜒𝜒𝑚𝑚), (45) 

and the mth –order for 𝑚𝑚 ≥ 1  become 

𝑥𝑥1𝑚𝑚(𝑑𝑑) = 𝜒𝜒𝑚𝑚𝑥𝑥1[𝑚𝑚−1](𝑑𝑑) + ℏ1𝐼𝐼𝛽𝛽[ℜ1𝑚𝑚(𝑥𝑥1�⃖��[𝑚𝑚−1](𝑑𝑑))] (46), 

𝑥𝑥2𝑚𝑚(𝑑𝑑) = 𝜒𝜒𝑚𝑚𝑥𝑥2[𝑚𝑚−1](𝑑𝑑) + ℏ2𝐼𝐼𝛽𝛽[ℜ2𝑚𝑚(𝑥𝑥2�⃖���[𝑚𝑚−1](𝑑𝑑))] (47). 

From Equation (46) and Equation (47) above, we generate symbolic series solutions for 

Equation (41) and Equation (42) as: 

𝑥𝑥1(1) = 38402ℏ1𝑑𝑑, (48) 

𝑥𝑥2(1) = 9600ℏ2𝑑𝑑, (49) 
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𝑥𝑥1(2) = 4. 423910400 × 1011ℏ2𝑑𝑑3ℏ12 + ℏ1(−6.144704020 × 108ℏ1 + (3.0720000 ×
107ℏ2)𝑑𝑑2 + 38402ℏ1𝑑𝑑 + ⋯  (50) 

  𝑥𝑥2(2) = 9600ℏ2𝑑𝑑 + 8727.272727ℏ22𝑑𝑑
11
10 − 9.6005000 × 107ℏ2𝑑𝑑2ℏ1 (51) 

From Equation (22), the ”optimal values” of (ℏ1 , ℏ2) is estimated by 

𝜕𝜕Δ(ℏ1,ℏ2)
𝜕𝜕ℏ1

= 0, 𝜕𝜕Δ(ℏ1,ℏ2)
𝜕𝜕ℏ2

= 0 (52). 

It is found that  

Δ1(1) = 1. 636236158 × 1016 − 7. 612634534 ×20 ℏ1 − 2.171187483 ×25 ℏ12  −
2.004277445 × 1028ℏ13 − 8.154151650 × 1019ℏ2 + 1.409110792 × 1024ℏ1ℏ2 (53) 

Δ2(1) = 1. 414477488 × 1015 + 2. 038537912 × 1019ℏ2 (54) 

Our calculations indicated that, Δ1(3) and Δ2(3) has its minimum values at  

Δ1(3) = −2.149 ×17 and    Δ2(3) = −2. 678 ×11. 

and we have ℏ1 = 0.1041094886, ℏ2 = −0.6938686201 that gives an optimal solution to the 

problem 

Example 2: We consider test problem from (Schittkowski, 2012) [No 1] 

𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠 𝑔𝑔(𝑥𝑥) = 100(𝑥𝑥2 − 𝑥𝑥12)2 + (1− 𝑥𝑥1)2 (55) 

𝑠𝑠𝑠𝑠𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑  𝑑𝑑𝑡𝑡  𝜓𝜓(𝑥𝑥) = 1.5 ≤ 𝑥𝑥2 (56) 

𝑥𝑥0 = (−2, 1) (57) 

whose analytical solution is unknown, but the intended optimal solution is 𝑥𝑥1∗ = 1, 𝑥𝑥2∗ = 1. From 

Equation (5), we have 

𝐺𝐺(𝑥𝑥,𝜚𝜚) = 100(𝑥𝑥2 − 𝑥𝑥12)2 + (1 − 𝑥𝑥1)2 + 𝜚𝜚(𝑚𝑚𝑎𝑎𝑥𝑥{0,−1.5 − 𝑥𝑥2}2) (58) 

Taking the differentiation of Equation (58), we have 

𝑇𝑇𝛽𝛽𝑥𝑥1(𝑑𝑑) = −400𝑥𝑥13 + 400𝑥𝑥1𝑥𝑥2 − 2𝑥𝑥1 + 2, (59) 

𝑇𝑇𝛽𝛽𝑥𝑥2(𝑑𝑑) = 200𝑥𝑥12 − 200𝑥𝑥2, (60) 

𝑥𝑥1(0) = 0,  𝑥𝑥2(0) = 0. (61) 

Following the same procedure above, we have 

𝑥𝑥1(1) = −794ℏ1𝑑𝑑, (62) 

𝑥𝑥2(1) = 600ℏ2𝑑𝑑, (63) 

𝑥𝑥1(2) = −8. 069580800 × 1012ℏ14ℏ2𝑑𝑑5 + 1.260872000 × 108ℏ14𝑑𝑑4 − 1. 479028739 ×

108𝑑𝑑
31
10ℏ14+. . .. (64) 

𝑥𝑥2(2) = (−60000ℏ22 + 317600ℏ1ℏ2)𝑑𝑑2 + 545.4545455ℏ22𝑑𝑑
11
10 + 600ℏ2𝑑𝑑)   (65) 
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and so on. 

Our estimation showed that Δ1 (3) and Δ2 (3) has its minimum results at  

Δ1(3) = −0. 149 × 1017, Δ2(3) = 0.124 × 1011. 

The optimal value of ℏ1 ,ℏ2 Are determine as ℏ1 = −0.05346 and ℏ2 = 0.07546.  
 

Table 1: The relation and absolute error among (OHAM, 𝛽𝛽 = 1) and (RK4,𝛽𝛽 = 1) solutions, of example 1. 
𝑑𝑑𝑘𝑘 OHAM𝑥𝑥1(t) OHAM𝑥𝑥2(t) RK4𝑥𝑥1(t) RK4𝑥𝑥2(t) Abs error 𝑥𝑥1(t) Abs error𝑥𝑥2 (t) 

0.0000  0.000000 0.000000 0.000000  0.000000 0.000000 0.000000 
0.0005 1.970111 3.871642 1.970899 3.871887 0.000788 0.000245 
0.0010  1.977113 3.907789 1.978274 3.907993 0.001161 0.000204 
0.0015 1.981099 3.922324 1.981384 3.922554 0.000285 0.00023 
0.0018  1.982155 3.930478 1.983132 3.930578 0.000977 0.00010 
0.0020  1.993105 3.995556 1.994252 3.995654 0.001147 0.000098 

 

Tables 1 and 2 show the analytical approximate and numerical values, for example1, and 

example 2 at a different time (t). It can be understood that the analytical approximate and 

numerical values are in close correspondence with a deficient absolute error, which makes OHAM 

an excellent method to solve non-linear FOCOP. 

 
Table 2: The relation and absolute error among (OHAM, 𝛽𝛽 = 1) and (RK4, 𝛽𝛽 = 1) solutions of example 2. 

𝑑𝑑𝑘𝑘 OHAM𝑥𝑥1(t) OHAM𝑥𝑥2(t) RK4𝑥𝑥1(t) RK4𝑥𝑥2(t) Abs error 𝑥𝑥1(t) Abs error𝑥𝑥2 (t) 
0.0  0.000000     0.000000  0.000000  0.000000  0.000000  0.000000 
2.0  0.156230    0.023457  0.161481  0.023694  0.005251  0.000237 
4.0  0.691769    0.578784  0.693706  0.579773  0.001937  0.000989 
6.0  0.830467    0.788985  0.830548  0.789065  8.1E-05  8E-05 
8.0  0.917518    0.970234  0.927053  0.970426  0.009535  0.000192 
10.0  0.997398    0.987894  0.998826  0.993629  0.001428  0.005735 

 

 
Figure 1. The h1-curve of OHAM for example 1 at (t=0.005) of 𝑥𝑥1(t). 

 
The h1-curve in Figure 1 shows the convergence domain of the solution of example 1, 

between an interval of −0. 5 < ℏ1 < 0.5 at 𝑥𝑥1(t) and provides a clear region of the optimal values for 

the convergence of the proposed solution method.  Figure 2 shows the domains of convergence of 

the series solution given by h2 at x2(t) of example 1 and provided a clear region of the optimal 

values for the convergence of the proposed solution method. 
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Figure 2:  The h2-curve of OHAM for example 1 at (t=0.005) of x2 (t).  

 
Figures 3 and 4 shows mathematical simulations of the proposed method at x1(t) and x2(t) of 

example 1, respectively. The mathematical simulation illustrates OHAM solution as an excellent 

tool to solve the problem. 
 

 
Figure 3. The mathematical simulation of OHAM solution for 𝛽𝛽=0.9 of example 1 at the third-order 

approximation of x1(t). 
 

 
Figure 4. The mathematical simulation of OHAM solution for 𝛽𝛽=0. For example 1 at the third-order 

approximation of x2 (t). 

 
 



 

 

http://TuEngr.com Page | 10 
 

Figures 5 and 6 shows the comparisons between different values of OHAM and RK4 method 

for justification at 𝑥𝑥1(𝑑𝑑) and 𝑥𝑥2(𝑑𝑑) of example 1. The comparison shows that OHAM would perform 

fast convergence to the optimal solutions.  From Figure 6, the solution from OHAM is very precise 

with the expected optimal solution as the values of (𝛽𝛽=1) approaches 1.  The h1-curve in Figure 7 

shows the domain of convergence of the series solution of example 2, between an interval of -

1<ℏ_1<1 at x1 (t). 
 

 
Figure 5. Comparisons between OHAM (𝛽𝛽 = 0.9, 𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠 𝑑𝑑𝑎𝑎𝑠𝑠ℎ,𝛽𝛽 = 1, 𝑑𝑑𝑡𝑡𝑑𝑑) and RK4 (𝛽𝛽 = 1, 𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑑𝑑) 𝑎𝑎𝑑𝑑 𝑥𝑥1(𝑑𝑑) 

of example 1. It is seen in figure 5 that the solution from OHAM is very precise with the expected optimal 
solution as the values of (𝛽𝛽=1) approaches 1. 

 

 
Figure 6. Comparisons between OHAM (𝛽𝛽 = 0.9, 𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠 𝑑𝑑𝑎𝑎𝑠𝑠ℎ,𝛽𝛽 = 1, 𝑑𝑑𝑡𝑡𝑑𝑑) and RK4 (𝛽𝛽 = 1, 𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑑𝑑) 𝑎𝑎𝑑𝑑 𝑥𝑥2(𝑑𝑑) 

of example 1.  
 

 

Figure 7 shows the domains of convergence of the series solution given by ℏ1 at x1(t) and ℏ2 at 

x2(t) of example 2 and provided a clear region of the optimal values for the convergence of the 

proposed solution method.  
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Figure 7. The h1-curve of OHAM, for example 2 at (t=2) of x1 (t).  

 

 
Figure 8. The h2-curve of OHAM, for example 2 at (t=2) of x2 (t). The h2-curve in figure 8 shows the 

domain of convergence of the series solution of example 2, between an interval of −1 < ℏ2 < 1 at x2 (t). 
 

 
Figure 9. The mathematical simulation of OHAM solution for 𝛽𝛽=0. 

For example 2 at the third-order approximation of x1(t). 
 

Figures 9 and 10 show mathematical simulations of the proposed method at x1(t) and x2(t) 

of example 2. The mathematical simulation illustrates OHAM solution as an excellent tool to solve 

the problem. 
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Figure 10. The mathematical simulation of OHAM solution for 𝛽𝛽=0. 

For example 2 at the third-order approximation of x2(t). 

 
Figure 11. Comparisons between OHAM (𝛽𝛽 = 0.9, 𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠  𝑑𝑑𝑎𝑎𝑠𝑠ℎ, 𝛽𝛽 = 1,𝑑𝑑𝑡𝑡𝑑𝑑) and RK4 

(𝛽𝛽 = 1, 𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑑𝑑) 𝑎𝑎𝑑𝑑 𝑥𝑥1(𝑑𝑑) of example 2.   
 

It is seen in Figure 11 that the solution from OHAM is very precise with the expected optimal 

solution as the values of (𝛽𝛽=1) approaches 1.  From Figure 12, the solution from OHAM is very 

precise with the expected optimal solution as the values of (𝛽𝛽=1) approaches 1 

 

 
Figure 12. Comparisons between OHAM (𝛽𝛽 = 0.9, 𝑠𝑠𝑝𝑝𝑎𝑎𝑠𝑠𝑠𝑠  𝑑𝑑𝑎𝑎𝑠𝑠ℎ, 𝛽𝛽 = 1,𝑑𝑑𝑡𝑡𝑑𝑑) and RK4 

(𝛽𝛽 = 1, 𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑑𝑑) 𝑎𝑎𝑑𝑑 𝑥𝑥2(𝑑𝑑) of example 2. 



 

http://TuEngr.com Page | 13 
 

 

5 Discussion 
The results are given by (ℏ1 ,ℏ2) Using OHAM shows the strength of the method on the 

convergence of the series solution through h-curves plots of the systems for (𝛽𝛽=0.9, 1.)  We 

showed that even three-order terms of the analytical approximation of the solutions are enough 

to get an accurate solution. It is understandably that the exactness can be optimized by 

computing a few more terms of the approximate analytical solutions. 

 

6 Conclusion 
This paper solved non-linear FOCOP by OHAM after the third order of approximation 

solution was used with fast convergence and accurate solutions. The numerical comparison among 

the RK4 and OHAM (𝛽𝛽=1), shows that OHAM would perform fast convergence to the optimal 

solutions as (𝛽𝛽=1) tends to 1, the integer-order solution for the system is reclaimed  OHAM is an 

effective tool for obtaining an AAS for non-linear FOCOP. 

 

7 Availability of Data and Material 
Information can be made available by contacting the corresponding author. 
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