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Abstract 
This paper presents a simple method for copy-move forgery detection 
(CMFD) of digital images with a view of enhancing the computational 

speed. The method employs BRISK, which is based on the FAST corner 
detector,  for identifying the key points (KPs), and then uses SIFT for 
evaluating the feature descriptors at the identified KPs. It also applies 
wavelet transform for feature reduction and K-means clustering for 
transforming from feature space into cluster space. It eliminates false 
matches by using RANSAC. The paper exhibits the superior performances of 
the developed method over existing methods by presenting results on 500 
digital images. 
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1 Introduction 
Copy-move forgery (CMF) is a commonly used technique for doctoring digital images by 

simply copying a part of an image and pasting it on the same image. Such forged images must be 

detected before using them as evidence in the law of court, insurance claim, and so on. Due to the 

flexible and easily available image editing tools, everyone with little knowledge tampers the images 

either with malicious intent or for creating fun, thereby causing damage to the credibility of the 

images. Besides, such tampering in images cannot be detected by naked eyes.  Image forgery 

detection has turned out to be a hot topic among researchers and has become a tool for detecting 

the authenticity of the given digital images (Warif et al., 2016). 

Several techniques were suggested in recent decades for forgery detection and categorized 

into block-based and key-point (KP) based techniques (Zhang et al., 2018). The former ones divide 
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the image into several small blocks and extract features from each block, and then perform feature 

matching among the blocks for forgery detection.  The block-based techniques are computationally 

inefficient and fail to detect geometrically altered images. The KP-based techniques identify a 

small number of KPs and evaluate features at these KPs, and are preferred due to their 

computational efficiency and invariant to geometrical transformations.  Singular value 

decomposition (SVD) and discrete wavelet transform (DWT) were applied to each cascaded block to 

obtain reduced features, and Lexicographical sorting was performed before performing the 

matching among the blocks for forgery detection (Li et al., 2007).  The dyadic wavelet transform was 

applied on features of each cascaded block for obtaining reduced sub-bands and feature matching 

was performed on these reduced sub-bands for forgery detection (Muhammad et al., 2012).  

MROGH descriptors were evaluated at KPs, obtained by Harris Corner Detector, with a view of 

achieving uniform distribution of features and robustness against geometrical transformations (Yu 

et al., 2014).  KD-Tree was applied on the evaluated SURF features for multidimensional data 

matching in performing forgery detection (Shivakumar and Baboo, 2017).  The agglomerative 

hierarchical clustering was applied on the evaluated SURF features and 2NN feature matching was 

performed for avoiding false matches  (Kiruthika et al., 2019).  The SURF descriptors were evaluated 

and the K-nearest neighbour search was performed for forgery detection with a view of getting 

better reproducibility and robustness (Paul et al., 2019).  Discrete Cosine Transformation (DCT), 

SVD, and SVM were employed in detecting image forgery at the frequency domain with a view of 

lowering the dimension of features and enhancing the classification accuracy (Priyanka et al., 

2020).  The KP-based SURF descriptors were evaluated and dynamic histogram equalization was 

applied for effective forgery detection even on images with smooth forged regions (Bilal et al., 

2020a).  A SURF-based technique was suggested for detecting forgeries with geometrical 

transformations (Bilal et al., 2020b).  The block and KP-based forgery detection techniques were 

surveyed while outlining various feature extraction and matching techniques and mentioning the 

research gaps (Warif et al., 2016).  A few forgery detection techniques were reviewed besides 

narrating the several performance measures for assessing the forgery detection methods and 

showing the research gaps (Zhang et al., 2018). 

Although, the SIFT and SURF-based forgery detection methods yield successful results in 

forgery detection and are robust to geometric transformations in the forged regions. Still, these 

approaches are computationally inefficient involving large computations for both identifying the 

KPs and computing the descriptors. 

The KP detector should find prominent image regions in such a way that they are repeatedly 

identified and robust to different image transformations and viewpoints. Similarly, the KP 

descriptor should represent the most significant and unique features at the identified KPs, in such a 

way that the same image region can be detected if encountered.  Moreover, the speed of such 

detection and description needs to be optimized to make it suitable for online applications in 

addition to producing high-quality results. 
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Recently, BRISK descriptors were suggested for KP identification and feature extraction 

(Warif et al., 2016; Zhang et al., 2018). As the KP identification is based on the FAST corner 

detector, BRISK has the advantage of higher speed but has poor reliability and robustness as it is 

sensitive to image distortions and transformations. This paper thus attempts to exploit the superior 

features of both BRISK and SIFT in obtaining fast KPs and robust feature descriptors respectively. 

The proposed method has been applied on 500 test images and the results are presented in this 

paper. 

2 Proposed Method 
The proposed CMFD (PCMFD) involves a series of functions. Initially, it converts the RGB 

colour scale image into grayscale and removes the noise. It identifies the KPS by BRISK and extracts 

the features by SIFT. It clusters the features by K-means clustering and performs feature matching 

and removal of false matches by Random Sample Consensus (RANSAC). The block diagram of the 

PCMFD is shown in Figure 1, and the various blocks are explained in this section: 
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Figure 1:  Block diagram of PCMFD 

2.1 Identification of KPs 
SIFT is an algorithm for evaluating both the KPs and their feature descriptors. SIFT uses a 

time consuming procedure involving Difference of Gaussian (DoG) images in scale space to identify 

scale-invariant KPs.  Instead of evaluating the SIFT KPs, the proposed method uses the fast BRISK 

algorithm for identifying KPs.  BRISK is based on the FAST corner detector involving a Bresenham 

circle to classify whether a candidate pixel is a corner or not.  It performs a test at a pixel- m  by 

forming a Bresenham circle of radius 3 and examining the 16 pixels around that circle { }161LÎn  
as illustrated in Figure 2. It detects m-as a corner if  9 contiguous pixels in the circle are darker than 

)( q-mI  or brighter than )( q+mI ,  where q  is a chosen threshold. 
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where 

nmI ®  indicates the intensity of point- m  in the circle around pixel- n . 

brightQ  is a set of points in the circle, which are brighter. 

darkQ   is a set of points in the circle, which are darker. 

BRISK is insensitive to scale changes as it identifies corner pixels in different scale space 

using 9-16 masks. FAST identification is adapted at four octave levels, and the interest regions are 

computed from neighboring pixels. All the  points in the chosen regions are subjected to non-

maximum suppression, and identified as corner points, if they satisfy the maximum condition with 

respective to their neighbours. 
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Figure 2:  Bresenham circle around point-m. 

2.2 Feature Extraction and Reduction 
SIFT descriptors are computed at each identified BRISK KPs.  The procedure involving the 

formation of a 16x16 window around each KP and partitioning the window into sixteen 4x4 

patches. It then evaluates the gradients and orientations and arranges them into an 8 bin histogram 

using a "Gaussian weighting function" for each 4x4 patch, thereby resulting in 128 (4x4x8) unique 

descriptors. It finally normalizes the 128 values and represents them as descriptors to the 

respective KP. The length of each feature vector is so large and increases the time involved in 

matching. The size of each feature vector can be reduced by applying DWT, which uses the dyadic 

positions and scales and is powerful in yielding good results. The feature vector is arranged into a 

matrix of (16 x 8) and the DWT is applied to obtain the reduced approximation components of  (8 x 

4) LL sub-band matrix, which is rearranged to have a (1 x 32)  sized reduced feature vector. 

2.3 K-means Clustering 
K-means clustering is an unsupervised learning algorithm for classifying the feature space 

into a K-number of clusters by grouping similar objects based on features. It partitions the points in 

the feature matrix  of size  into K number of clusters  .  Rows of the feature 

matrix correspond to feature points and columns correspond to variables. This algorithm exploits 

the approximation of the nearest neighbour method in finding the nearest neighbouring features 

][x )( DN ´ ],[ 21 kccc L
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and the cluster centre. The clustering is thus performed by minimizing the sum of squares of 

Euclidean distances between observed features and the corresponding cluster centroids. 

Minimize    (2), 

where 

 (3) 

represents Euclidean distance 
  represents the n-th row of the feature matrix, representing n-th feature 

  denotes the i-th variable of the n-th feature. 

  represents the m-th cluster. 

  denotes the i-th variable of the m-th cluster centre. 

  denotes the number of feature points 
  represents the number of values in each feature vector 

 
The steps involved in the K-means algorithm are outlined below: 

1. Select the value for K, that is, the number of clusters.  
2. Randomly generate values for K number of cluster centres  

3. Assign each feature point to the nearest cluster point by computing the Euclidean distance. 
4. Compute new values for cluster centres that minimize Equation (2). 
5. Repeat the steps (3) and (4) till there is no change between subsequent cluster centre values. 

 
All cluster centers, obtained by the K-means algorithm, form the visual word vocabulary, 

wherein each visual word represents a cluster centre. The visual vocabulary has to be formed 

through learning from a given feature database. The procedure for building the visual vocabulary 

and assignment of the visual word is pictorially depicted in Figure 3. 
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Figure 3:  K-means Clustering and Sorting. 

2.4 Feature Matching and False Match Elimination 
The matching between two features p and q can be performed by checking whether their 

Euclidean distance ),( qpd , computed for 32-dimensional descriptors, is less than a certain 
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threshold.  If the number of matching is larger than three, then that image is classified as a forged 

one in this paper. The Euclidean distance (Liwei et al., 2005) is evaluated by 

d
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The false matches can be eliminated through the affine geometry model, known as RANSAC 

(Fischler and Bolles, 1981).  The model randomly selects a set of matched KPs and estimates a 

transformation matrix T:  
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Then, each KP ),( qq yx  is transformed by T and the distance with its matching KP is computed. If 

the distance is smaller, the pair is considered as a perfect match (denoted as inliers), otherwise, 

considered as a false match (represented as an outlier) and discarded. 

3 Results and Discussion 
The PCMFD was applied to an image database comprising 350 tampered images and 150 

authentic images.  To validate the performances of the PCMFD, the classical CMFD (CCMFD) 

method involving complete SIFT without feature reduction was also developed. The height and 

width of the images in the database were not altered during the study. The results of four tampered 

and one authentic image was presented in this section. 

The five test images along with their originals are shown in Table 1, which also gives the 

dimensions of the images. The widths and heights of these images are proportionally reduced and 

presented in the table so as to portray the correct shape of the images. After identifying the BRISK 

and SIFT KPs, they are marked in the respective images and displayed in Table 2. The table also 

includes the number of identified KPs by the BRISK and SIFT techniques.  It can be seen that the 

number of SIFT KPs is 2-3 times greater than those of BRISK KPs, except for the fourth image. The 

excessively large number of KPs though increases the quality of the diagnosis, it increases the 

computational cost. 

After performing the KP matching and applying the RANSAC for false KP eliminations, the 

PCMFD identifies the KPs in the forged regions as marked on images in Table 3. The most 

important question here is whether the PCMFD is able to produce correct results. It is seen from the 

table that both the methods were able to identify the first four images as forged ones and the last 

one as an authentic image, thereby exhibiting that the PCMFD is as accurate as of the CCMFD in 

diagnosing the images.  Though the number of matched KP pairs of the CCMFD is larger than the 

PCMFD, the computation time taken by the CCMFD is large and may not be suitable for online 

diagnosis of a large image database, while the PCMFD is able to produce quick and accurate 
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diagnostic results.  Moreover, the number of matched KPs differ due to the nature, smoothness, and 

gradients of the images. 

 
Table 1: Original and Forged Images 

Image No. Original Forged Size 

1 

  

1508*984 

2 

  

1164*755 

3 

  

954*727 

4 

  

1454*895 

5 

 

Authentic Image 1454*815 
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Table 2:  Images with clustered KPs 
Image 

No. Image with BRISK KPs No. of 
KPs Image with SIFT KPs No. of 

KPs 

1 

 

3842 

 

7218 

2 

 

936 

 

1220 

3 

 

687 

 

2196 

4 

 

9007 

 

7665 

5 

 

2840 

 

4283 
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Table 3:  Image with Matched KPs. 
Image 
No. PCMFD No. of Matches CM No. of Matches 

1 

 

165 

 

204 

2 

 

10 

 

22 

3 

 

33 

 

55 

4 

 

85 

 

221 

5 

 

0 

 

0 

 

In order to study the performances on a large variety of images,  the confusion matrix is formed 

for the entire image database comprising of 500 images as in Table 4. Both the PCMFD and the 

CCMFD are able to diagnose the forgery correctly for tampered images 324 and 321 images 

respectively, thereby indicating that the PCMFD is able to correctly classify 92.57% of the given 

images, while the CCMFD  classifies 91.71%. This indicates that the PCMFD is much better than 
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CCMFD and the wrong diagnosis of the CCMFD is mainly due to a larger number of KPs leading to 

false matches. However, both methods correctly categorize the original images as authentic ones. 
 

Table 4:  Confusion Matrix 
   Detected Result 
   Authentic (150) Tampered (350) 

Actual Result 

PCMFD 
Authentic (150) TN 150 (100%) FP 0 (0%) 
Tampered (350) FN 26 (7.43%) TP 324 (92.57%) 

 

CCMFD 
Authentic (150) 150 (100%) 0 (0%) 
Tampered (350) 29 (8.29%) 321 (91.71%) 

 
Table 5:  Comparison of performances 

Method Accuracy Sensitivity Specificity Precision F1 
PCMFD 94.8 92.57 100.0 100.0 96.14 
CCMFD 94.2 91.71 100.0 100.0 95.68 

Li et al. (2007) 91.03 -- -- -- -- 
Yu et al. (2014) -- 91.7 -- 93.6 92.6 

Shivakumar and Baboo (2017) -- 85.4 -- 91.1 88.2 
Kiruthika et al. (2019)  -- 94 -- -- 93 

 
Table 6:  Comparison of  NET 

Method NET (seconds) 
PCMFD 10.21 
CCMFD 11.96 

Yang et al. (2017) 12.4 
Huang et al. (2011) 135.12 
Fischler et al.(1981) 294.69 

 

The accuracy, sensitivity, specificity, precision, and FI performance indices are also computed 

for the PCMFD and CCMFD, and compared with a few of the existing published methods in Table 5. 

It is very clear that all the performances of the PCMFD are better than the CCMFD and existing 

published results.  

The normalized execution time (NET) of the PCMFD, which was run in Matlab 2016 platform 

using 2.67 GHz Intel Core-i5, 4 GB RAM desktop computer, is compared in Table 6, which clearly 

indicates that the PCMFD is faster than the other methods.  The overall performances of the 

PCMFD are found to be much better than the literature results, thereby making it suitable for 

practical online applications. 

4 Conclusion 
A new methodology for performing CMFD of digital images was developed to improve the 

computational speed. It employed the BRISK algorithm for identifying the KPs and used SIFT for 

computing the descriptors at identified KPs. As the BRISK is based on fast corner detection, it 

becomes the prime reason for improved computational speed. Moreover, the number of BRISK KPs 

is comparatively lower than that of SIFT KPs. The method used K-means clustering and performed 

Euclidean distance-based KP matching.  It then removed the false KP pairs by employing RANSAC. 
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The study on 500 digital images clearly indicated that the proposed method was able to detect the 

forgery effectively with a lower computational burden. The comparison of performance indices also 

indicated superior performances over other methods. 

5 Availability of Data and Material 
Data can be made available by contacting the corresponding author. 
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