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Abstract 
The local geoid model of Thailand, THAI17G, developed in the 
corroboration project between the Royal Thai Survey and Chiang Mai 

University, relied on terrestrial and airborne gravitational data during 2015–
2017.  We evaluated the model using the 100 GNSS/Levelling control 
stations, showing the standard deviation of height accuracy at ±5.8cm. The 
height determination in Thailand referred to the mean sea level at the Ko Lak 
vertical datum. To align THAI17G with the orthometric height determination 
from GNSS,  we required a conversion surface that connected THAI17G to Ko 
Lak 1915 vertical datum using 299 GNSS/Leveling stations. This research 
aims to study the least-squares collocation (LSC) with parameters as the 
surface conversion technique for geoid model improvement. LSC with 
parameters is an interpolation method that properly integrates two types of 
data with different statistical properties, THAI17G and 299 GNSS/Levelling 
co-point stations of geoid undulation. The polynomial technique was used to 
defined tilt and bias as optional parameters for LSC at every co-points.  We 
evaluated three types of covariance functions to be optimally used for the 
collocations.  The study result showed that the geoid model using LSC with 
parameters and Gaussian (exponential) covariance function yielded the most 
improvement of standard deviation ±3.7cm. In comparison, the ordinary LSC 
and the EGM2008 provided the standard deviations ±3.9cm and ±10.5cm, 
respectively. 
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1 Introduction 
The local gravimetric geoid model, THAI17G [1], was based on more than 10,000 terrestrial 

gravity stations and airborne gravity data covering the whole country. The gravity surveys were in 

precise local geoid model development, starting from 2015 to 2016 under the corroboration 

between the Royal Thai Survey Department (RTSD) and Chiang Mai University (CMU). THAI17G has 

recently played an important role in the method of orthometric height determination using GNSS 

technology. However, the method's height accuracy still yielded at the decimeter level when the 

model was evaluated with the 100 GNSS/Levelling control stations. The leveling, in Thailand, is 

generally based on the mean sea level at Ko Lak (1915) vertical datum, while THAI17G is in a global 

mean sea level. The inconsistency between THAI17G and Ko Lak 1915 deteriorated the accuracy of 

height determination using THAI17G and GNSS survey. 

Least-squares collocation approaches are proper methods for integrating two data types with 

different statistical properties for generating conversion surfaces. THAI17G is a local geoid model 

that covered Thailand's whole country and has a one-arcminute spatial resolution.  The fitting of 

the model to Ko Lak vertical datum is useful in the modern height determination technique, based 

on the GNSS method, which avoids the costly and time-consuming spirit leveling.  Hence, this 

research aimed to study the geoid model improvement techniques to provide more height accuracy 

from GNSS using LSC with parameters integrated with the distributed 299 GNSS/Levelling co-

points as control stations. The GNSS/Levelling stations are established and measured under 

FGCC1984 [2] by RTSD. 

2 Theoretical Concepts 

2.1 Polynomial Interpolation 
This method is geometric method that based on co-points of study area with known 

horizontal coordinates and vertical coordinates (ellipsoidal heights and orthometric heights). Then 

the geoid height of unknown points will be expressed by the polynomial equation [3,4] as 

𝑁𝑁(𝑥𝑥,𝑦𝑦)  =  𝑁𝑁0(𝑥𝑥, 𝑦𝑦) + ∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗𝑚𝑚 − 𝑖𝑖
𝑗𝑗  = 0

𝑚𝑚
𝑖𝑖 = 0  (1), 

where 𝑁𝑁(𝑥𝑥,𝑦𝑦) = dependent value of the polynomial (e.g. geoid height), 𝑁𝑁0(𝑥𝑥,𝑦𝑦) = approximate value 

determined by a given geoid model, (𝑥𝑥, 𝑦𝑦) = coordinates of an interpolation point, m = order of the 

chosen polynomial, 𝑎𝑎𝑖𝑖𝑖𝑖= model parameters, for i, j = 0 to m. From the Equation (1), the form of the 

least-squares can be written by Equation (2). 

(ℎ𝑖𝑖 − 𝐻𝐻𝑖𝑖 − 𝑁𝑁𝑖𝑖0) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 + 𝑎𝑎2𝑦𝑦𝑖𝑖 + ℎ𝑖𝑖𝑖𝑖ℎ𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 (2). 

The form of the error vector can be written by 

𝜈𝜈 = 𝐴𝐴𝐴𝐴 − 𝑙𝑙 (3), 

𝑙𝑙 = �
ℎ𝑖𝑖 − 𝐻𝐻𝑖𝑖 − 𝑁𝑁𝑖𝑖0
⋮ . ⋮ . ⋮
ℎ𝑛𝑛 − 𝐻𝐻𝑛𝑛 − 𝑁𝑁𝑛𝑛0

� = �
𝑙𝑙𝑖𝑖
⋮
𝑙𝑙𝑛𝑛
� (4), 
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where ℎ𝑖𝑖  = known ellipsoidal heights, 𝐻𝐻𝑖𝑖  = known orthometric heights, 𝑁𝑁𝑖𝑖0 = known geoid heights 

resulting from a given geoidal model, 𝑎𝑎𝑜𝑜, 𝑎𝑎1 and 𝑎𝑎2 = unknown parameters to be estimated, (𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) = 

horizontal coordinates, 𝜈𝜈 = error vector, A = coefficient matrix, X = unknown parameter vector, l = 

observation vector, n = number of observation, i = 1 to n. The unknown parameter vector, X can be 

estimated by the least-squares solution 

𝑋𝑋� = (𝐴𝐴𝑇𝑇𝑃𝑃𝑃𝑃)−1𝐴𝐴𝑇𝑇𝑃𝑃𝑃𝑃  (5), 

where 𝑋𝑋�= estimate of parameter vector 𝑋𝑋, 𝑃𝑃 = a weight matrix of the observations. 

2.2 Least-Squares Collocation 
Least-squares collocation [1,5,6,7,8] is a method for integrating two types of data with 

different statistical properties in a random process.  In this study, the collocation method yields the 

interpolated conversion surface values using the residual values of two sources of geoid 

undulations, i.e., THAI17G and GNSS/Levelling co-point. Then, combining the adjusted residuals to 

THAI17G fits the Ko Lak vertical system.  We define the residual as follows 

𝑒𝑒 = (ℎ𝑊𝑊𝑊𝑊𝑊𝑊84 − 𝐻𝐻𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) − 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇17𝐺𝐺   (6), 

where ℎ𝑊𝑊𝑊𝑊𝑊𝑊84 was the geometric height in World Geodetic System 1984 (WGS84) reference 

ellipsoid, 𝐻𝐻𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾  was the orthometric height on Kolak 1915, and 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇17𝐺𝐺 was the geoid undulation 

from THAI17G.  The residual e was in the vector form l with the signal vector s and the noise vector 

n as 

𝑙𝑙 = 𝑠𝑠 + 𝑛𝑛  (7), 

and 

𝑠̃𝑠 = 𝐶𝐶𝑠𝑠𝑠𝑠(𝐶𝐶𝑡𝑡𝑡𝑡 + 𝐶𝐶𝑛𝑛𝑛𝑛)−1𝑙𝑙  (8), 

where 𝐶𝐶𝑠𝑠𝑠𝑠 was the covariance matrix between the predicted points and the observation values, 𝐶𝐶𝑡𝑡𝑡𝑡 

was covariance matrix of observation values. The symbol 𝐶𝐶𝑛𝑛𝑛𝑛 represents the covariance matrix of 

random errors (or noises) in the residuals. The full matrix of 𝐶𝐶𝑛𝑛𝑛𝑛 was difficult to obtain because we 

had a limited knowledge of random errors, for instance, in gravimetric geoid noises, the leveled 

Kolak-1915 heights, and GNSS heights during the time of geoid modeling. For simplicity, we 

assume no correlation between observations. Thus, 𝐶𝐶𝑛𝑛𝑛𝑛 is defined by 𝜎𝜎02𝐼𝐼 as 

𝐶𝐶𝑛𝑛𝑛𝑛 = 𝜎𝜎02𝐼𝐼  (9), 

where 𝜎𝜎02 is a priori variance and I is an identity matrix. 

2.3 Least-Squares Collocation with Parameters 
Least-squares collocation with parameters [5,8] is an LSC technique that integrated the tilt 

and bias between two surfaces, THAI17G and GNSS/Levelling co-point at the co-point locations as 

(ℎ𝑊𝑊𝑊𝑊𝑊𝑊84 − 𝐻𝐻𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) − 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇17𝐺𝐺 = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑦𝑦 + 𝑠𝑠 + 𝑛𝑛 = 𝐴𝐴𝐴𝐴 + 𝑠𝑠 + 𝑛𝑛   (10), 

with 



 

 

http://TuEngr.com Page | 4 
 

𝛽̂𝛽 = (𝐴𝐴𝑇𝑇(𝐶𝐶𝑡𝑡𝑡𝑡 + 𝐶𝐶𝑛𝑛𝑛𝑛)−1𝐴𝐴)−1𝐴𝐴𝑇𝑇(𝐶𝐶𝑡𝑡𝑡𝑡 + 𝐶𝐶𝑛𝑛𝑛𝑛)−1((ℎ𝑊𝑊𝑊𝑊𝑊𝑊84 − 𝐻𝐻𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) − 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇17𝐺𝐺)  (11) 

where A was a coefficient matrix and (x,y) were horizontal coordinates. The vector “𝛽𝛽” consisted of 

the a0 a1 and a2 unknown parameters to be estimated. The unknown parameters possibly 

corresponded to, for instance, bias and tilts between two datums. It should be noted that Equation 

(9) included systematic errors in the adjustment computation. 

3 Methodology 
In this study, we selected the 399 RTSD GNSS/Levelling co-point as control stations, 

distributed in the whole area of Thailand. The leveling was in the 1st order FGCC (1984) standard. 

We randomly chose 100 co-point for geoid evaluations, and the remaining points were for geoid 

model improvement. The assessments were done in five separated areas, having different 

topographics as listed in Table 1 and shown in Figure 1. 
 

 
Figure 1: The 399 GNSS/leveling co-points: 299 points for geoid improvement  

(green dots) and 100 points for geoid evaluation (triangle red dots). 
 

Table 1: Statistics of topographics. (Unit: m) 
Area min max mean SD 

1 72.919 872.245 337.432 151.062 
2 14.61 893.873 168.741 203.392 
3 82.371 467.195 178.263 48.118 
4 0.984 468.197 55.514 88.215 
5 1.694 98.595 20.283 19.221 
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Figure 2 showed the steps of the THAI17G improvement technique using least-squares 

collocations. The first step was to calculate the residuals of geoid undulations between THAI17G 

and GNSS/Levelling. We constructed the empirical covariance function under the general 

assumptions of stationary and isotopic processes. This study evaluated three covariance functions 

to determine the optimal function, suitable for the collocations.  The covariance matrices, Cst and 

Ctt were derived from the covariance functions. Finally, the improved geoid models were tested by 

the orthometric heights at 100 checkpoints and also compared with THAI17G and EGM2008. 

 
Figure 2: Flowchart of methodology. 

3.1 The Geoid Undulation Residual Calculation 
The relation of combining THAI17G geoid undulation (N), WGS84 ellipsoidal height (hWGS84), 

and Kolak-1915 orthometric height (HKolak) errors was defined by forming the residual vector l as 

𝑙𝑙(𝑛𝑛𝑛𝑛1) = �
ℎ1 − 𝐻𝐻1 − 𝑁𝑁1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇17𝐺𝐺
⋮ . ⋮ . ⋮
ℎ𝑛𝑛 − 𝐻𝐻𝑛𝑛 − 𝑁𝑁𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝐼𝐼17𝐺𝐺

� = �
𝑙𝑙1
⋮
𝑙𝑙𝑛𝑛
�  (12). 

The residuals indicated the differences between geoid heights from THAI17G and the local mean 

sea level, referred to Ko Lak vertical datum at “n” GNSS/Levelling co-point (n=299). 

𝑒𝑒 = (ℎ𝑊𝑊𝑊𝑊𝑊𝑊84 − 𝐻𝐻𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾) − 𝑁𝑁𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇17𝐺𝐺   (13). 

However, there possibly existed datum inconsistencies, for instance, bias and tilts. We considered 

such systematic errors as unknown parameters to be estimated, according to Equations (1) and (2). 

3.2 Empirical Covariance Function 
The covariance functions of 𝐶𝐶𝑠𝑠𝑠𝑠(. ) and 𝐶𝐶𝑡𝑡𝑡𝑡(. ), which were the elements of 𝐶𝐶𝑠𝑠𝑠𝑠 and 𝐶𝐶𝑡𝑡𝑡𝑡, could be 

computed using a covariance function that fitted the empirical covariance function of residuals. In 

this study, we used three models : (1) Gaussian (exponential) covariance function, (2) Gaussian (2-

exponential) covariance function and (3) the 2nd order covariance function [1,7,9], as shown in 

Table 2. 
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Table 2: shows three model of covariance function. 
Model Covariance function 

I Gaussian (exponential) covariance function : 𝐶𝐶(𝑠𝑠) = 𝐶𝐶0 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆
𝐿𝐿
� 

II Gaussian (2-exponential) covariance function : 𝐶𝐶(𝑠𝑠) = 𝐶𝐶0 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆2

𝐿𝐿2
� 

III the 2nd order Markov covariance function : 𝐶𝐶(𝑠𝑠) = 𝐶𝐶0 �1 + 𝑆𝑆
𝛼𝛼
� 𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝑆𝑆

𝛼𝛼
� 

 

The parameter 𝐶𝐶0 was a variance of observations to be estimated, S was the displacement between 

points, and L was a correlation length of the residuals. We determined all parameters, i.e., C0, L, 

and α, by fitting the models into the empirical covariance function of the residuals. Finally, the 

covariance matrices in Equation (8) were derived from the models. 

3.3 Least-Squares Collocation 
The ordinary least-squares collocation in Equation (8) required zero-mean data [6]. The 

residuals in Equation (6) generally contained long and medium wavelength errors in geoid models. 

They could be treated as the unknown parameters estimated through a simple least-squares 

adjustment. We then removed such bias and tilt from the residuals before the collocation 

procedure. However, the height quantities might contain systematic errors that might not be 

absorbed by Equation (2) [5,8].  The collocation might provide unsatisfying results.  An alternative 

approach to improving result quality was applying least-squares collocation with parameters that 

combined a systematic part and a random part (i.e., 𝐴𝐴𝐴𝐴 and s, respectively), as shown in Equation 

(10).  The approach simultaneously yielded predicted signals and estimated parameters according 

to Equations (8) and (11), respectively. Using least-squares collocations provided the conversion 

surfaces with the estimated parameters included. We obtained the improved THAI17G models 

fitting to Ko Lak 1915 datum. 

4 Results and Discussion 
We manually detected all residuals at 399 GNSS/leveling co-points for possible outliers. For 

simplicity, we chose the a priori variance (𝜎𝜎02) in Equation (9) to be 1.  The estimated empirical 

covariance function was plotted in the green dotted line in Figure 3. The parameter C0 of three 

covariance functions in Table 1 were estimated to be 0.014 m2. At this step, our significant and 

time-consuming task was to determine optimal covariance functions for each model. We repeated 

parameter computations for three models by trial and error to achieve the best fit models to the 

empirical covariance function. The correlation lengths were approximately 25 km., 21 km., and 10 

km. for models I, II, and III, respectively. According to Equations (8) and (11), three models were 

analyzed in least-squares collocation approaches at one-arcminute spatial resolution.  We 

computed the predicted signals, 𝑠̃𝑠, and then added mean biases and estimated parameters back to 

obtain conversion surfaces (hWGS84 - HKoLak - NTHAI17G).  Adding the conversion surfaces to NTHAI17G, 

yielded the improved THAI17G geoid models.  We then evaluated the geoids at 100 GNSS/leveling 
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co-points, distribute locations in Thailand’s area.  The discrepancies results at 95% confidence 

interval were summarized in Tables 3 and 4.  We found that using the Gaussian (exponential) 

covariance function (Model I) performed at most and suitable for estimating 𝐶𝐶𝑠𝑠𝑠𝑠 and 𝐶𝐶𝑡𝑡𝑡𝑡.  The 

standard deviations were 0.039m and 0.037m for LSC and LSC with parameters, respectively.  It was 

also clear that LSC with parameters, having the mean of 0.009m, could absorb systematic errors 

superior to LSC, having the mean value of 0.014m. For the least-squares collocation with 

parameters, all the parameters, i.e., 𝑎𝑎0, 𝑎𝑎1, and 𝑎𝑎2, were simultaneously estimated in the 

adjustment system.  The trend surface was computed on a one-arc minute grid and had the values 

of 𝑎𝑎0 = 0.901m, 𝑎𝑎1 = -3.654x10-8, and 𝑎𝑎2 = +1.274x10-8. These significant parameters showed that 

THAI17G might contain long and medium wavelength errors. A significant tilt (-0.036 ppm) 

occurred in an east-west direction, while a north-south tilt (+0.013 ppm) was much smaller.  

 
Figure 3: The empirical covariance function of observations 

 
Table 3 Statistics of discrepancies for the improved geoid using least-squares collocation at 100 

GNSS/leveling checkpoints, 95% confidence interval. (Unit: m) 
Model Min Max Mean SD 

I -0.075 0.092 0.014 ±0.039 
II -0.080 0.125 0.016 ±0.049 
III -0.078 0.123 0.015 ±0.045 

 
Table 4 Statistics of discrepancies for the improved geoid using least-squares collocation with parameter at 

100 GNSS/leveling checkpoints, 95% confidence interval. (Unit: m) 
Model Min Max Mean SD 

I -0.075 0.089 0.009 ±0.037 
II -0.077 0.104 0.013 ±0.045 
III -0.077 0.097 0.011 ±0.041 
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Table 5 Statistics of model comparing at 100 GNSS/leveling checkpoints, 95% confidence interval. (Unit: m) 
Model Min Max Mean STD 

EGM2008 (2190) 0.604 1.098 0.860 ±0.105 
THAI17G 0.808 1.037 0.919 ±0.058 
LSC -0.075 0.092 0.014 ±0.039 
LSC with Parameter -0.075 0.089 0.009 ±0.037 

 
Table 6 Statistics of model comparing at GNSS/leveling checkpoints were divided the study area into five 

areas, 95% confidence interval. (Unit: m) 
Model Min Max Mean SD 

Area 1 (18 GNSS/leveling checkpoints) 

EGM2008 (2190) 0.706 1.098 0.920 ±0.105 
THAI17G 0.839 1.037 0.970 ±0.053 

LSC -0.064 0.089 0.040 ±0.045 
LSC with Parameter -0.075 0.070 0.024 ±0.043 

Area 2 (16 GNSS/leveling checkpoints) 
EGM2008 (2190) 0.731 1.034 0.847 ±0.092 

THAI17G 0.819 0.971 0.901 ±0.050 
LSC -0.057 0.068 -0.004 ±0.036 

LSC with Parameter -0.068 0.062 -0.013 ±0.036 
Area 3 (30 GNSS/leveling checkpoints) 

EGM2008 (2190) 0.562 1.079 0.862 ±0.116 
THAI17G 0.808 0.995 0.895 ±0.051 
LSC -0.075 0.120 0.009 ±0.047 
LSC with Parameter -0.070 0.123 0.012 ±0.045 

Area 4 (20 GNSS/leveling checkpoints) 
EGM2008 (2190) 0.774 0.964 0.869 ±0.064 
THAI17G 0.836 1.004 0.916 ±0.050 
LSC -0.026 0.082 0.016 ±0.031 
LSC with Parameter -0.034 0.076 0.013 ±0.031 

Area 5 (16 GNSS/leveling checkpoints) 
EGM2008 (2190) 0.616 0.987 0.809 ±0.119 
THAI17G 0.836 1.023 0.936 ±0.051 
LSC -0.050 0.059 0.019 ±0.031 
LSC with Parameter -0.056 0.058 0.017 ±0.032 

 

In Table 5, the least-squares collocation with parameters performed best fit to Ko Lak 1915 

with the station deviation value of ±0.037m. whereas ±0.039m. for the ordinary least-squares 

collocation. Both cases showed better results than EGM2008 at the maximum degree and order 

2160 and THAI17G, having the standard deviations of ±0.105m. and ±0.058m., respectively. The 

least-squares collocation with parameters improved the accuracy of THAI17G by 36 percent. These 

statistic results confirmed the best performance of least-squares collocation with parameters 

among the others. 

We investigated whether the least-squares collocation with parameters locally performed well.  

The improved geoid models were tested in smaller areas where some of the 100  GNSS/leveling co-

points were located, as seen in Figure 1.  The results showed that LSC with parameters produced a 

geoid fitting to Ko Lak 1915 in Area's 1 and 3, the standard deviations of ±0.043m. versus ±0.045m. 

and ±0.045m. versus ±0.047m., respectively.  These results indicated that LSC with parameters 

slightly improved the accuracy of the geoid model in mountainous areas (see also Table 1).  

However, there were no significant differences between LSC and LSC with parameters Area’s 2, 4, 
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and 5, whose terrains were moderate, flat, and narrow, respectively.  We require more numerical 

investigations by extending parameters in Equations (1) and (10) for further works. 

5 Conclusion 
This research aimed to study the least-squares collocation with unknown parameters for local 

geoid improvement. Such a stochastic process technique combined systematic part and random 

part. This study used the 399 GNSS/leveling co-points in the first-order leveling and GNSS 

horizontal networks in Thailand, 299 co-points for constructing conversion surfaces, and 100 co-

points for geoid accuracy assessments. We investigated three covariance functions and achieved 

Gaussian (exponential) covariance function as the optimal one, beneficial to the collocation. 

Overall, we found that LSC with parameters significantly improved geoid models' accuracy and 

provided the standard deviation of ±0.037m., whereas LSC had ±0.039m. Both collocations 

performed better than THAI17G and EGM2008. However, testing in five areas having different 

topographies showed no significant differences between LSC and LSC with parameters in flat areas. 

To improve the performance of LSC with parameters, we needed more numerical investigations and 

parameters reflecting more local datum inconsistencies between local geoid models and Ko Lak 

1915 vertical datum. 

6 Availability of Data and Material 
Data can be made available by contacting the corresponding author. 
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