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Abstract 
Epoxides are one of the important precursors for the formation of 
organic compounds with oxygen as they undergo ring-opening 

reactions easily to form bifunctional compounds. Homogeneous catalysts 
have been used in producing epoxide compounds. However, as these types of 
catalysts require further separation processes as well as corrosive issues, 
heterogeneous catalysts have received massive attention. In this study, 
natural clay from montmorillonite K10 (MMT-K10) was modified via the 
incorporation of VO(acac)2 at various concentrations. The result of XRD 
indicated that the crystalline nature of incorporated MMT-K10 was 
maintained with the 001 basal spacing calculated to be 9.95 Å. The AAS 
suggested that VO(acac)2 complex has been successfully incorporated onto 
MMT-K10 with the increasing amount of vanadium element as the 
concentration of vanadium complex solution increased. The catalytic activity 
of the vanadium complex supported on MMT-K10 showed that 20% of 
cyclohexene was converted with 70% selectivity to cyclohexene oxide using 
tert-butyl hydroperoxide (TBHP) as the oxidant. 
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1 Introduction 
Considerable attention has been paid to vanadium complexes as catalysts because of their 

good performance. Vanadium complexes as homogeneous catalysts have been utilized in numerous 

organic reactions such as hydroxylation of  alkanes (Sharma et al., 2018), bromination reactions 
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(Maurya et al., 2015), oxidations of sulfides (Rayati et al., 2017; Nikoorazm et al., 2016), and 

oxidations alcohols to aldehydes and ketones (Sarmah et al., 2014; Zavahir et al., 2016; 

Steffensmeier & Nicholas, 2018). 

The epoxidation process usually involves strong mineral acids as homogeneous catalysts 

with peracids as oxidizing agents. Vanadium-based catalysts can also be utilized in the epoxidation 

of alkenes. Homogeneous catalytic systems based on vanadium complexes are considered to be very 

efficient catalysts for the epoxidation of various types of alkenes (Vandichel et al., 2012; Dar et al., 

2019; Maurya, 2020). It was found the system that consists of VO(acac)2 and TBHP permits highly 

chemoselective mono-epoxidation of olefinic alcohol like  geraniol (Vandichel et al., 2012). 

Vanadium complex [VO(hyap)(acac)2] was successfully synthesized and proven to be catalytically 

active for epoxidation of various alkenes with H2O2 as the oxidant (Maurya, 2020). 

Incorporation of transition metal complexes on solid porous materials as a catalyst for 

epoxidation of alkenes has been one of the techniques used in order to minimize hazardous waste 

exposed to the environment. The epoxidation of styrene has been conducted using VO2+ Schiff base 

complex immobilized onto graphene oxide and it was found that the conversion of styrene was ca. 

31.1% with high selectivity to styrene epoxide (96%) (Su et al., 2014). The immobilization of VO2+ 

Schiff base complex onto mesoporous carbon (CMK-3) functionalized with the amino group was 

also tested for styrene epoxidation with conversion and selectivity to styrene epoxide were 91.8% 

and 63.7%, respectively (Wang et al., 2016). 

Natural aluminosilicates, such as clays and zeolites, are solid acids that are notably 

considered as favourable competitors to replace liquid acids in catalysis reactions. Among these 

two catalysts, natural and modified clays have serious attention due to their good catalytic activity 

and environmentally friendly properties. Particularly for the most common and potentially 

modified clays in organic synthesis application are the montmorillonite K10 (MMT-K10) and 

montmorillonite KSF. MMT-K10 has a higher surface area (about 250 m2g-1) in contrast to that of 

KSF (10 m2g-1), making it a more effective and excellent catalyst (Kaur & Kishore, 2012). Apart from 

high surface area property, it also holds a high cation exchange capacity. Due to these 

characteristics, clays have been used as support for epoxidation reactions. 

For example, boehmite modified with 3-(trimethoxysilyl)propylamine or 3‐(tri‐
methoxysilyl)‐propyl chloride to support vanadium complex was investigated as heterogeneous 

catalyst for epoxidation of various alkenes. The high conversion and selectivity values (>90%) in 

alkenes epoxidation with up to 10 recyclabilities of the used catalyst indicate that this 

heterogeneous catalyst is an excellent catalyst (Mirzaee et al., 2015, Mirzaee et al., 2019). 

Oxovanadium(IV) Schiff base complex was immobilized onto montmorillonite for epoxidation of 

cyclooctene. Maximum conversion of cyclooctene was achieved (up to 90%) with excellent 100% 

selectivity to cyclooctene oxide using TBHP as an oxidant (Bezaatpour & Sheikh, 2016). Recently, 

olefins’ epoxidation with H2O2 was catalyzed by VO4+ Schiff base complex entrapped in zeolite-Y 

(Modi et al., 2018). The reaction condition was optimized and it was revealed that under the 
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optimized condition VO4+ Schiff, base complex was found to be a potential catalyst with up to 90% 

conversion of olefin. Herein, we report on the vanadium-based catalyst i.e. VO(acac)2 supported on 

MMT-K10 for epoxidation of cyclohexene under low temperature with tert-butyl hydroperoxide 

(TBHP) as the oxidant. 

2 Method 

2.1  Incorporation of Vanadium Complex into MMT-K10 Clay 
The method for supporting MMT-K10 metal complex with VO(acac)2 was done based on the 

previous method (Farias et al., 2011). Prior to the modification step, MMT-K10 was dried at 110°C. 

Then, 10.0 g of clay was immersed in a VO(acac)2 solution in dry toluene (100 mL) and stirred under 

N2 flow for 18 h at 25°C. The product was filtered and washed with a mixture of hot toluene and hot 

ethanol to remove the unreacted metal complex. Finally, the solid was placed in an oven of 110°C 

for 5 h. These procedures were repeated to produce K10-V with various concentrations of VO(acac)2 

solutions. VO(acac)2 supported on MMT-K10 is designated as K10-V (1-4) with (1-4) indicating the 

concentrations of vanadium complex i.e. 0.05 (1), 0.1 (2), 0.15 (3) and 0.2 M (4). 

2.2  Characterization of Supported MMT-K10 Clay 
All catalysts diffractograms were recorded using Bruker AXS Germany D8 Advance, with CuK

α radiation (40 kV, 40 mA, wavelength, = 1.5406 Å). The identification of a phase from the 

diffraction patterns of the powder was based on the position of the lines in terms of 2θ ranging 

from 2-80°.  Atomic absorption spectroscopy (AAS) was utilized to assess the content of vanadium 

in solid catalysts. 20 ml of 1.0 M hydrochloric acid was mixed with 0.1 g of incorporated clay 

samples. The solution was stirred for 1 h and centrifuged. This step was repeated a few times until 

all the vanadium metal leached from MMT-K10. This can be indicated by the reoccurrence of the 

light grey colour of unmodified MMT-K10. A Micromeritic ASAP 2020 was utilized experimentally 

to obtain N2 adsorption-desorption  data at −196°C. The isotherm used was the BJH (Barret–Joyner–

Halenda) adsorption-desorption branch to evaluate the pore diameters of the materials. The 

samples were degassed under vacuum at 110°C for 4 h prior to the adsorption experiments. 

2.3  Catalytic Epoxidation of Cyclohexene 
The epoxidation reaction was conducted in a 50 ml two-neck flask connected to a reflux 

condenser, and airtight rubber septum for N2 flow. The temperature was maintained at 60-70°C 

using the rotamantle. Cyclohexene was chosen as substrate and TBHP as oxidant, in the 1:2 molar 

ratio of substrate:oxidant (Shen et al., 2017; Behera & Parida, 2013). A 50 mmol of TBHP was added 

to 25 ml toluene containing either raw MMT-K10 or incorporated MMT-K10 clays as heterogeneous 

catalysts, whereas 25 mmol cyclohexene was added to 25 ml of the same solvent. The mixture was 

stirred vigorously and the samples were collected every 30 minutes. The solid catalyst was filtered 

out from the reaction mixture. To remove the unreacted peroxide, the filtrate flask was cooled in an 

ice bath (approximate 0°C) and a small amount of NaHSO3 solution with a concentration of 15% w/v 

was slowly added. The peroxide content was qualitatively observed using test strips (Quantofix 
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Peroxide 100). The final product was isolated and dried over anhydrous Na2SO4 (Farias et al., 2011). 

Finally, the samples were analyzed using gas chromatography. 

2.4  Identification and Quantification of Reaction Products 
The products from the epoxidation reaction were recorded using gas chromatography with a 

flame ionization detector (GC-FID). GC-FID condition was as follows: column DB-Wax (30 m x 0.25 

mm x 0.5μm), interface temperature (230°C), the temperature of the detector (250°C), the 

temperature of column (150°C (hold for 1 min) to 245°C at 30°C/min (hold for 20 min)) and helium 

as the carrier gas. Gas chromatography-mass spectrometry (GC-MS) Shimadzu, QP5050A equipped 

with a Carbowax column was used to identify the products. The condition of column temperature 

was similar to GC-FID. The calculation of conversion was done based on the percentage molar of 

cyclohexene (Equation 1) (Jiang et al., 2009). The conversion (Equation (1)) and selectivity 

(Equation (2)) were calculated based on the results obtained from gas chromatography.  

Conversion of cyclohexene (%) = initial mol−final mol
final mol

× 100 (1). 

Selectivity of cyclohexene oxide (%)  = GC peak area of cyclohexane oxide
GC peak area of all products

× 100 (2). 

3 Result and Discussion 

3.1  Characterization of Supported MMT-K10 Clay 
Figure 1 shows the diffractogram for raw MMT-K10 and K10-V samples. The XRD patterns 

revealed that the raw MMT K10 and K10-V samples had crystalline nature observed from the peak 

intensities and sharpness (Muthuvel et al., 2012). From the diffractogram pattern of the raw MMT-

K10, a layered structure with a basal spacing (d001) was calculated to be ca. 9.95 Å.  
 

 
Figure 1: XRD diffractogram of raw and supported MMT-K10. 

 
After modification of MMT-K10 with vanadium complex, the XRD profiles showed that the 

layered structure was unchanged and the d001 was calculated to be 9.89 Å. The similarities between 

the XRD patterns and d001 values of unmodified and modified MMT-K10 indicated that no change 

occurred in the lattice parameter during the complex supported on MMT-K10. The MMT-K10 

structure was also found to remain unchanged after the immobilization with manganese salen 
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complex (Bahramian et al., 2006), cobalt salophen complex (Jiang et al., 2009), and molybdenum 

acetylacetonate complex (Farias et al., 2011; Harun et al., 2018). 

Table 1 shows the vanadium content incorporated in MMT-K10 analysed by the AAS method. 

Generally, the amount of vanadium detected gradually increased as the concentration of the metal 

complex increased. The less amount of vanadium complex incorporated in the MMT-K10 structure 

could be due to the loosely bound ligands from the metal complex. It was reported that VO(acac)2 

mainly bonded to the silica surface by a hydrogen bond between the pseudo-π-system of the 

acetylacetonate ring and the silanols from the clay surface (Baltes et al., 1998). 
 

Table 1: Concentration of vanadium (μg/g) in K10-V 
Sample Vanadium (μg/g) 

MMT-K10 n.d. 
K10-V1 378.29 ± 12.2 
K10-V2 321.09 ± 20.1 
K10-V3 1161.1 ± 40.6 
K10-V4 1397.0 ± 43.5 

 
The large surface areas measured from N2 adsorption/desorption isotherms of raw and 

supported clay samples indicated that the size of the pores was in the mesopores range. The 

average pore diameter was found to be between 6.26 and 9.41 nm. The incorporation of vanadium 

complex on the MMT-K10 structure also determined the N2 adsorption capability. The 

incorporation of MMT-K10 clay with vanadium complex reduced its surface area and pore volume 

significantly (Table 2). K10-V proved less N2 uptake (lower BET surface area and pore volume) in 

comparison with raw MMT-K10, and further less N2 uptake at higher concentrations of modified 

clay (from K10-V1 to K10-V4). This change can be attributed to the functionalization of MMT-K10 

with VO(acac)2 moieties (Wang et al., 2016). A significant reduction of the BET surface areas and 

the pore volumes of the supported K10-V samples was due to the presence of bulky vanadium 

complex form inside the pore during the introduction of this complex on the walls of MMT-K10 

(Joseph et al., 2004). 
Table 2: Surface properties of MMT-K10 and K10-V samples. 

Catalyst BET Surface Area (m2/g) BJH Pore Volume (cm3/g) 
MMT-K10 223.25 0.38 

K10-V1 171.27 0.32 
K10-V2 162.65 0.30 
K10-V3 46.44 0.13 
K10-V4 37.67 0.10 

3.2  Catalytic Epoxidation of Cyclohexene 
The catalytic activity of K10-V(1-4) catalysts was experimentally tested for epoxidation of 

cyclohexene with TBHP, in the 1:2 molar ratio of substrate:oxidant. The main products in the 

epoxidation of cyclohexene analyzed by GCMS were found to be cyclohexene oxide, 1,2-

cyclohexane diol, 2-cyclohexenol, and 2-cyclohexenone, while the main by-products were 

cyclohexene 3-(tert-butyl) peroxide and 5-hexyn-3-ol (Figure 2). 
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Figure 2: Chemical reaction of cyclohexene with TBHP with the presence of a catalyst. 

 
The percentages of conversion and selectivity from epoxidation reaction of cyclohexene 

using raw and incorporated MMT-K10 catalysts with TBHP as oxidant were plotted in Figures 3 and 

4, respectively. Among the examined catalyst, raw MMT-K10 showed a strikingly low catalytic 

activity with the maximum percentage of cyclohexene conversion of ca. 17% while none of it 

converted into cyclohexene oxide. Notably, all of the K10-V catalysts were active for the 

epoxidation of cyclohexene with the maximum conversion of ca. 20% and cyclohexene oxide 

selectivity of 70%. The activity of different K10-V catalysts decreased in the following order of K10-

V2 (20%) > K10-V3 > K10-V1 > K10-V4 (14%). The selectivity of cyclohexene oxide showed a 

different decreasing trend: K10-V4 (70%) > K10-V1 (50%) > K10-V3 (46.5%) > K10-V2 (20%). At a 

high conversion of cyclohexene (20%), the selectivity of epoxide formation was about 20%.  
 

 
Figure 3: Conversion of cyclohexene using ♦: raw MMT-K10; ■: K10-V1; ▲: K10-V2;  

×: K10-V3 and ж: K10-V4 as catalyst. 
 

 
Figure 4: Selectivity of cyclohexene oxide using ♦: raw MMT-K10; ■: K10-V1;  

▲: K10-V2; ×: K10-V3 and ж: K10-V4 as a catalyst.  
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The low catalytic activity could be due to the catalyst deactivation during the epoxidation 

process (Morales-delaRosa et al., 2015). As can be seen from Figure 3, the trend of catalytic activity 

for all tested catalysts was found to increase for the first 30–60 minutes of reaction time. However, 

the conversion of cyclohexene has remained constant even after 210 minutes of reaction time.  

The presence of a metal complex was significant for epoxidation reactions of alkenes due to 

the Lewis acidity of the catalyst. Vanadium ion plays a major role to withdraw electrons from the 

tert-butylperoxo, t-BuOO- which increases the electrophilic nature of the peroxidic oxygens. This 

makes nucleophiles such as olefins easily attack the peroxidic oxygens to form epoxides (Gnecco et 

al., 2004). Thus, efficient catalysts should be strong Lewis acids and weak oxidants with a high 

oxidation state. A weak oxidant is required to reduce competing oxidation of an electron of the t-

BuOO- ligand which could lead to hemolytic decomposition of t-BuOOH (Behera & Parida, 2013). 

4 Conclusion 
In this work, we demonstrated the synthesis and characterization of heterogeneous catalyst 

that has been prepared by incorporation of VO(acac)2 onto the MMT-K10 clay matrix. The XRD, 

AAS, surface area, and pore volume data show that the vanadyl complex is physically supported 

throughout the matrix without changing the crystallinity of the MMT-K10 structure. Catalytic tests 

showed that the increased VO(acac)2 amount on MMT-K10 has improved the selectivity of 

cyclohexene oxide to 70% with TBHP as the oxygen source. 

5 Availability of Data And Material 
Data can be made available by contacting the corresponding author. 
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