
Page | 1

©2021 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies

ISSN 2228-9860 eISSN 1906-9642 CODEN: ITJEA8
International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies

http://TuEngr.com

A Hybrid Approach for Recovering Use
Case Models of MVC Web Applications

Emad Y. Albassam1*

1 Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University,

Jeddah, SAUDI ARABIA.
*Corresponding Author (Email: ealbassam@kau.edu.sa).

Paper ID: 12A13T

Volume 12 Issue 13
Received 24 June 2021
Received in revised form 28
September 2021
Accepted 15 October 2021
Available online 23 October
2021
Keywords:
Use Case Models;
Reverse Engineering;
Recovery; Architectural-
Patterns; Design-
Patterns; Model-View-
Controller; MVC; Web
Applications; Role-
Based Access Control.

Abstract
In Model-Driven Software Engineering (MDSE), software systems are
constructed from abstract models that are used to guide the
development process. Use Case models are abstract models that aim to

capture the intended behavior of a software system from the point of view of
its actors. Use Case models are not only helpful during development time but
can also assist in software evolution and modernization. Such post-
development benefits can only be obtained with up-to-date Use Case models.
However, manual maintenance of these models may cause divergence such
that these models can become outdated as the software system evolves over
time. Furthermore, legacy software systems may not have well-documented
Use Case models. Therefore, it is beneficial to recover these models through
reverse engineering of source code and supplementary documentation of the
software system. This paper proposes a hybrid approach for recovering Use
Case models for web applications. The proposed approach relies on defining
recovery patterns for known architectural- and design patterns that are
widely used to construct web applications. Each recovery pattern shows how
a particular Use Case model element, including Use Cases, actors,
relationships, and non-functional requirements of Use Cases, are to be
recovered. Both static and dynamic analyses of the web application’s source
code are then performed based on recovery patterns to recover the various
Use Case model elements. The proposed approach is applied to an open-
source, real-world MVC web application. Results show adequate recovery of
Use Case model elements of this application.

Disciplinary: Information System and Computer Science & Engineering
(Software Engineering).
©2021 INT TRANS J ENG MANAG SCI TECH.

Cite This Article:
Albassam, E Y. (2021). A Hybrid Approach for Recovering Use Case Models of MVC Web Applications.

International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies,
12(13), 12A13T, 1-17. http://TUENGR.COM/V12A/12A13T.pdf DOI: 10.14456/ITJEMAST.2021.272

http://TuEngr.com Page | 2

1 Introduction
Research has shown that maintaining software documentation after deployment through

conventional, manual approaches can be costly, time-consuming, and may result in inconsistencies

due to human errors and the continuous evolution of software systems [1] [4]. Furthermore, many

legacy software systems are either partially documented or lack any documentation [3] [5]. As a

result, certain post-development activities such as software evolution and modernization can

become difficult in such cases [11]. Therefore, researchers have investigated approaches and

techniques in which software documentation can be recovered from implementation artifacts such

as source code and supplementary documentation of the software system [8]. The Unified Modeling

Language (UML) [12] has become prominent for documenting software systems through abstract

models such that each UML model provides a different view of the software system [13]. The

purpose of UML Use Case models is to capture the functional requirements of a software system

from the point of view of its actors. It has been shown that Use Case models aid in improving

software maintenance [2]. In addition, recovery of Use Case models for existing and legacy

software systems is considered important in software modernization since software requirements

of such systems need to be considered and analyzed by requirement engineers so that they are

either partially or fully fulfilled by the replacing software system.

This paper proposes an approach for recovering Use Case models for MVC web applications.

The proposed approach is based on well-known architectural- and design patterns that are widely

used to construct such applications. In this approach, recovery patterns are defined based on

architectural and design patterns. Each recovery pattern defines how a specific concept related to

Use Case models, such as actors, Use Cases, and relationships between Use Cases can be formally

recovered. Both static and dynamic analyses of the application’s source code are then performed to

recover these elements based on the defined recovery patterns. Static and dynamic analyses are

conducted in a phased approach to recover the various Use Case model elements incrementally.

Furthermore, dynamic analysis is performed to refine the recovered Use Case model with additional

details that otherwise cannot be recovered during static analysis. In addition, the paper describes

the implementation details of a proof-of-concept tool, named REC-MVC, which realizes the

proposed approach. The proposed approach is validated through a case study in which the Use Case

model of an open-source, real-world MVC web application is recovered using REC-MVC.

2 Related Work
Recovery of software models from source code and/or supplementary software

documentation has long been the subject of much research [8]. Such approaches vary based on

whether recovery relies on the analysis of the application’s source code (i.e. white-box recovery) or

not (i.e. black-box recovery). Additionally, such approaches may utilize various techniques

including (1) static analysis of the application’s source code such that the source code is analyzed

statically without running the actual application, (2) dynamic analysis in which the application is

executed to collect runtime specific information such as execution traces, or (3) both static and

http://TuEngr.com Page | 3

dynamic analysis techniques. Finally, such approaches may target recovery of different

abstractions, such as the recovery of Use Case models, state machines, class diagrams, Entity

Relationship-Diagrams (ERDs), data-flow diagrams, and/or other abstractions. The remainder of

this section presents approaches for Use Case model recovery as they are closely related to this

work.

An approach by Ceponiene et al. [7] describes how a website’s Use Case model can be

recovered dynamically without accessing the internal source code. Their approach relies on

recording and analyzing user preformed activities at runtime while the software system is

executing. To accomplish this, users indicate beforehand their roles and the processes (i.e. use

cases) they will perform. Similarly, work by Dugerdil et al. [10] presents a dynamic decision tree

approach for recovering Use Case models in which human intervention is required to document

system use cases. Compared to these approaches, we assume that use cases may require certain

privileges for actors to access them and show how actors, Use Cases and Use Case access privileges

can be automatically recovered using static analysis of source code without having the users

indicate such information.

Li et al. [14] describe an approach in which dynamic analysis of the software system’s source

code is performed to mine and discover the system’s Use Case model. Zhang et al. [9] show how use

case models can be recovered from source code. However, these approaches require assistance from

a domain expert to recover certain Use Case model elements such as actors and Use Case

relationships.

Work by Santos et al. [6] presented an automated approach for recovering Use Cases of MVC

web applications in which source code and endpoint URLs are analyzed to recover Use Cases.

Miranda et al. [8] investigated how Use Case models can be recovered from Graphical User

Interfaces (GUIs). However, their work relies solely on static analysis of source code and does not

address invocation of polymorphic operations nor consider recovery of non-functional

requirements such as authorization access of Use Cases.

Compared to these works, this paper investigates a hybrid approach for recovering Use Case

models from MVC web applications. The approach is based on widely used architectural- and

design-patterns in this domain to facilitate the recovery process since knowledge of such patterns

can be exploited to address some of the limitations in previous works. The proposed approach is

hybrid in that it incorporates both static and dynamic analysis such that the various Use Case

model elements are recovered incrementally. Furthermore, dynamic analysis is performed to refine

the discovered model by analyzing polymorphic operation invocations. In addition, this paper

investigates how nonfunctional requirements, namely Use Case access privileges, can be

automatically recovered and used to guide the recovery process.

http://TuEngr.com Page | 4

3 Architectural- and Design-Patterns for Web Applications:
Background

This section provides a background on existing concepts, such as architectural- and design-

patterns, that are commonly used to construct web applications and form the basis of the proposed

approach presented in this paper.

3.1 Model-View-Controller (MVC) Architectural-Pattern
In the Model-View-Controller (MVC) pattern [15], user requests are received and processed

by controller actions (see Fig. 1). Upon receiving a request, the controller’s action issues commands

to related models and views to fulfil the user’s request. Models are data structures that may

encapsulate domain knowledge, business rules, and/or application data. Views on the other hand

are responsible for presenting responses to the end-user given zero or more model instances.

Therefore, MVC separates concerns related to coordination (i.e. controllers) from application data

(i.e. models) and presentation (i.e. views).

Furthermore, it is common for many currently available MVC web frameworks, such as ASP.NET

MVC Core and Spring framework, to build the MVC architectural-pattern on top of the HTTP

protocol such that each controller action is bound to a specific HTTP method (e.g. HTTP Get, HTTP

Post, and HTTP Delete).

Figure 1. The Model-View-Controller (MVC) Pattern.

3.2 Service-Oriented Architecture (SOA)
The service-oriented architectural (SOA) pattern is widely used to compose software

applications, including MVC web applications, from reusable services [13] such that accesses of

these services are determined and coordinated by coordinator components (see Figure 2). As there

are many approaches to implement service-oriented architectures, we consider in this paper

implementation of SOA through the Simple Object Access Protocol (SOAP).

Figure 2: The Service-Oriented Architectural (SOA) Pattern. Example of sequential services access.

http://TuEngr.com Page | 5

3.3 Role-Based Access Control (RBAC)
The Role-Based Access Control (RBAC) pattern [17] is commonly used to regulate accesses

to web resources such as controller actions in the MVC architectural pattern. In this pattern (see

Figure 3), roles are created to define sets of resource access policies. Each role is then assigned a set

of permissions of allowed (or disallowed) resources by this role. Application users are assigned to

roles either directly or indirectly via user groups. The application users are then authorized to

access (or denied from accessing) resources by an authorization component based on their roles in

the application.

Figure 3: Role-based Access Control Pattern.

3.4 Layer Supertype Pattern
The Layer Supertype pattern [16] can be used in situations in which multiple controllers in

the MVC architectural-pattern share common behaviors (e.g. authorization validation) such that

these common behaviors are extracted into an abstract parent controller (i.e. the controller layer

supertype). The controller supertype (see Figure 4) is then specialized into multiple concrete

controllers that can reuse the common behaviors implemented by the super type.

Figure 4: Layer Supertype Pattern.

4 Recovery Patterns For MVC Web Applications
This section defines recovery patterns for recovering Use Case models. Each recovery pattern

is associated with a specific architectural- or design pattern and shows how a specific Use Case

model element, such as actors, Use Cases, and relationships, are to be recovered.

4.1 Recovery of Actors
In Use Case models, actors are entities in the external environment that interact with the

software system. An actor can be either a human user, an external system, or an I/O device [13].

http://TuEngr.com Page | 6

Since it is common for human users and external systems to interact with web applications, this

section shows how each type of these actors is recovered by the proposed approach.

1) Recovery of Human Actors

The recovery pattern of human actors is based on the role-based access control (RBAC)

pattern which is widely used in MVC web applications to implement authorization mechanisms. In

RBAC, access to MVC controller actions can be restricted to authorized users based on their

permissions. Since human actors interact with the software system through controller actions, then

recovery of human actors in the Use Case model can be based on analyzing RBAC data sources as

follows.

Let R = r1..rn be the set of roles in the software application and Pi = p1..pm be the set of

permissions that are assigned to role ri. Since each role r ∈ R defines a valid role of authorized users

in the application, then each role is initially part of the actors set A. Therefore,

∀r ∈ R then r ∈ A

In use case models, an actor can be specialized from another actor through the

generalization/specialization relationship. A specialized actor is associated with every Use Case as

its parent actor but can also be associated with additional Use Cases. To recover the

generalization/specialization relationship between the actors in A, the set of permissions Pi with i =
1..m is analyzed as follows.

Let Childi denotes the set of child actors for actor ai ∈ A. Then,

∀ai,aj ∈ A with i ≠ j, Pi ⊂ Pj ⇒ ai ∈ Childj

That is, for every two actors ai and aj in A, if actor ai’s permissions is a proper subset of actor’s

aj permissions, then actor ai is a child of (i.e. specialized from) actor aj.

2) Recovery of External Systems
An MVC web application may require services from external systems to provide its intended

functionality to its users. For instance, a travel agency system may require the services of external

airline, car rental, and payment gateway systems. Therefore, it is important to identify such

external systems as actors in the recovered Use Case models.

In SOAs, software systems expose their services for consumption via endpoints. Let S be the

set of services that are consumed by the software application. Each service si ∈ S is bound to one or

more endpoints through which si can be invoked. Therefore, the set of actors A is expanded as

follows:

∀si ∈ S then si ∈ A

It should be noted that relying on the recovery pattern in the previous section for recovering

human actors is not sufficient, since the software system may send output messages to the external

system without receiving input messages from this system, and thus, such external system are not

covered by the RBAC data sources.

http://TuEngr.com Page | 7

4.2 Recovery of Use Cases and Their Relationships
In Use Case models, each use case represents a distinct functionality that provides a value to

a system’s actor. Furthermore, a use case may include or extend other use cases. This section

defines how use cases and their relationships can be recovered in MVC web applications.

1) Recovery of Use Cases

A use case defines a sequence of interactions between one or more actors and the software

system. Such interaction is initiated by the primary actor of the use case [13]. Since (1) use case

interactions are initiated by primary actors and (2) all incoming requests to the MVC architectural-

pattern are received by controller actions, then use cases of MVC web applications can be recovered

by statically analyzing controller actions. Let C = c1..cn be the set of controllers in the application

and Tci
= t1..tm be the set of actions of controller ci ∈ C, then the set U of use cases for the application

can be recovered as follows:

∀c ∈ C then Tci
 ∈ U

2) Recovery of Extend Relationship

The extended relationship capture optional and/or supplementary interactions within use

cases. For instance, lengthy alternatives and exceptional interactions of an extended use case can

be extracted into an extending use case. Therefore, the extended use case is considered

independent and may execute without triggering the interactions defined by the extending use

case. As an example, an action responsible for creating a user’s account may redirect the user

request to another action for error handling if the connection to the backend database cannot be

established. As a result, the use case corresponding to the action responsible for error handling

extends the use case corresponding to the action responsible for user account creation.

Since in this approach (1) use cases are mapped to controller actions and (2) a controller’s

action can redirect the requests it receives to another action (within the same controller or another

controller) for further processing, then the extended relationship can be recovered via static

analysis of source code by identifying such request redirects.

Given the set C of controllers in the application and the set Tci
of actions for controller ci ∈ C,

let t.ST where t ∈ Tci
be the root of the syntax tree that defines the behavior of action t, then the

extending use cases of the extended use case corresponding to action t, denoted as the set Et , can

be recovered by statically analyzing and searching for any expression that is of type controller

action redirection. The arguments list of these expressions are inspected to find the target

controller action (i.e. target of the redirect). The target controller action is then included in Et.

3) Recovery of Include Relationship

The include relationship in use case models can be used to extract common interactions

between different use cases into a shared-use case. The included use case is considered abstract

such that it cannot be executed independently without including use cases.

http://TuEngr.com Page | 8

We consider that common interactions among uses cases are implemented through the

Layer Supertype pattern such that a parent controller (i.e. the controller layer supertype)

implements the common operations which are inherited by child controllers using the

generalization/specialization relationship. Therefore, to recover such actions, analysis of source

code is performed to extract concrete controller classes that inherit from a parent controller class.

Given the set of controllers C, then the set of included use cases for an including use case ci,

denoted as the set Ici, can be recovered as follows:

∀ci,cj with i ≠ j, ci parent of cj ⇒ ci ∈ Icj

4.3 Recovery of Use Case Details
In the proposed approach, the details of each Use Case are recovered as a textual narrative

description that defines the sequence of interactions between the actors of the software system and

the software system, see Table 1.

Table 1: A subset of heuristic rules used to recover Use Case details
 Rule Name Transformed Form Description
1 Use Case Initiation "The actor {ActorName} requests to {ActionName}

{Plural(ControllerName)}"
Rule for transforming Use Case initiation by the primary
actor, which maps to a user’s request received by an
controller action in the MVC pattern. identifier of the
action

2 Model Query "The system queries {ModelName} into [{variable
name}]"

Rule for transforming models queries in the MVC
architectural pattern

3 Model Query All "The system retrieves all entries in {ModelName}
into [{variable name}]"

Rule for transforming models queries in which all entries
are retrieved

4 Model Updates "The system update {ModelName}" Rule for transforming models updates, including inserting
new or updating existing elements

5 Model Delete "The system deletes from {ModelName}" Rule for transforming elements deletion from a model in
the MVC architectural pattern

6 External System
Interaction

"The system communicates with the external system
{ExternalSystemName}"

Rule for transforming message exchanges between the
system and external systems

7 Use Case Inclusion "Include {Included Use Case Name}" Rule for transforming Use Case include relationships
8 Use Case Extension "{Extending Use Case} ” Rule for transforming Use Case extend relationships

For each use case ci ∈ C, the syntax tree ti.ST of the action that corresponds to ci is statically

analyzed. Nodes in the syntax tree that are architecturally significant are identified and classified

using a set of heuristic rules for transforming such nodes into a textual, human-readable form.

Table 1 lists a subset of the used heuristic rules. In this table, each rule contains the textual form

for the node that matches the rule. Furthermore, each textual form may contain placeholders that

are replaced by a token in the syntax tree. As an example, the statement "allAccount =

Accounts.All()" where Account is defined as a Model matches rule 3 in table 1 and is transformed

into "The system retrieves all entries in Accounts into allAccounts". Section V.C discusses in more

details the algorithm used to transform source code into textual narrative description using static

analysis.

5 Validation
The proposed approach described in Section 4 is validated through a case study. In this case

study, the Use Case model of an open-source and cross-platform content management system,

http://TuEngr.com Page | 9

Piranha CMS, is automatically recovered. Piranha CMS is implemented using the ASP.NET MVC

Core framework and consists of 27 related projects. Table 2 provides some relevant metrics related

to Piranha CMS to show its complexity to interested readers.

Table 2: Code metrics results of the Piranha CMS solution.
Number of Projects 27

Maximum Cyclomatic Complexity 2,559
Maximum Depth of Inheritance 6

Lines of Source Code 143,940
Lines of Executable Code 42,112

In order to automate the recovery process of the Use Case model using the recovery patterns

described in the previous section, a proof-of-concept tool, titled REC-MVC, has been implemented

and applied to recover the Use Case model of Piranha CMS. REC-MVC recovers the various Use Case

model elements incrementally in a phased approach such that the output of a phase is used as a

subset of the input to the next phase. These phases include: the initial reflection of the MVC web

application’s source code, static analysis of the source code, and dynamic analysis of operation

invocations and are described next.

5.1 REC-MVC: Recovering use Case Diagram via Reflection of MVC
Web Applications

During the first phase of REC-MVC, reflection code is injected into the solution’s startup

class responsible for configuring the MVC web application. The solution is then executed to collect

runtime information of the running application and query relevant class metadata. This phase

consists of five activities as follows:

• Recovery of the application’s Use Cases.
• Recovery of HTTP methods for each Use Case.
• Recovery of the application’s actors.
• Recovery of Use Case relationships.
• Recovery of Use Case access privileges.

Figure 5 shows a fragment of the injected code responsible for code reflection and querying.

As seen in Figure 5, reflection is used to obtain the list of all controller actions in the MVC

application. Use Cases are recovered by REC-MVC from the action’s name. Furthermore, Use Cases

are grouped into UML packages such that each UML package corresponds to a controller in the MVC

application. The HTTP method and actors are also recovered by inspecting attribute annotations of

controllers and actions. Since each Use Case may require certain privileges to be accessed, such

non-functional requirements are also recovered by inspecting the policies of authorization

attributes. Finally, relationships between use cases are recovered as described in section IV (not

shown in Figure 5).

To illustrate the recovery process performed by REC-MVC using reflection for recovering the

various Use Case diagram elements, Figure 6 shows an example of a controller implementation in

Piranha CMS. Since in this example the controller name is LanguageApiController, then a UML

http://TuEngr.com Page | 10

package is recovered by REC-MVC with the name LanguageApi. Since this controller implements 3

actions with the names Get, Save, and Delete, then these actions are recovered as Use Cases in the

LanugageApi package. Finally, since the controller has an authorization attribute with Admin

policy, then this is recovered by REC-MVC as the actor required to access the Use Case. It should be

noted that controllers without an Authorize attribute are associated with the default User.

Figure 7 shows the recovered use case diagram of Piranha CMS using REC-MVC (where

actors are associated with use cases of matching colors to reduce diagram cluttering). From Figure

7, REC-MVC is able to recover a total of 94 use cases and associate these uses cases to the 3

discovered actors. In addition, analysis performed by REC-MVC revealed recovery of Include

relationships between the use cases of Role and User packages (the including use cases) and the use

cases of the Manager package (the included use cases). To confirm this, an inspection of the

RoleController and UserController revealed that these controllers inherit from a base controller,

ManagerController, and therefore actions and methods of the former controllers can reuse the

methods of the later controller.

During this phase, privileges required to invoke uses cases by actors are also recovered

through reflection. Table 3 shows a fragment of the recovered privileges by REC-MVC for Piranha

MVC. To recover Use Case access privileges, REC-MVC analyzes authorization policies associated

with controllers and controller actions.

5.2 REC-MVC: Recovery of Use Case Details Via Static Analysis
In order to recover the details of each use case, REC-MVC performs static analysis of the

MVC web application’s source code using the Roslyn static analyzer. To avoid analysis of the

entire source code, static analysis is guided by the results of the previous phase such that only

controllers associated with recovered use case packages are analyzed.

Algorithm 1 shows how REC-MVC performs this phase. First, REC-MVC loads the solution of

the entire MVC application. It is assumed that the solution may consist of more than one project.

As an example, inspection of Piranha CMS solution revealed that it consists of 27 projects.

Therefore, REC-MVC iterates over each of these projects and then runs static analysis to compile

and obtain the syntax trees of these projects. Each syntax tree is then analyzed to retrieve method

declaration nodes such that these nodes are declared by a controller associated with a recovered

use case package. Each method declaration node is then statically analyzed further by analyzing its

descendant nodes, which correspond to the implementation of this method. Descendant nodes of a

method declaration node corresponding to statements such as method invocation expressions, for

each statements, and if statements are then inspected and transformed to textual natural language.

To facilitate the transformation of source code into a natural language, transformation rules

are applied. These rules are embedded into two dictionaries implemented by REC-MVC: the

predefined rules dictionary and the custom rules dictionary. The predefined rules dictionary

maintains a mapping between common MVC concepts, such as common Model operations, to their

natural language counterpart. For instance, a model that is defined as a collection of objects

http://TuEngr.com Page | 11

provides operations to select, query, or remove objects from the collection. Such operations are

defined in the dictionary as the key of the map while the value of each key is the natural language

counterpart of the operation. REC-MVC also allows keys of the map to be defined as regular

expressions to match different possible variances of implementations of the operations. Table 4

shows a fragment of the entries stored by the predefined rules dictionary.

Table 3: Fragment of recovered privileges required to invoke use cases in Piranha CMS.
Actor Package Use Case Required Privilege
User CMS Archive none
User CMS Page none
User CMS PageWide none
User CMS Post none
User CMS TeaserPage none

PiranhaAdmin AliasApi List PiranhaAliases
PiranhaAdmin AliasApi Save AliasesEdit
PiranhaAdmin AliasApi Delete PiranhaAliasesDelete
PiranhaAdmin CommentApi List PiranhaComments
PiranhaAdmin CommentApi Approve PiranhaCommentsApprove
PiranhaAdmin CommentApi UnApprove PiranhaCommentsApprove
PiranhaAdmin CommentApi Delete PiranhaCommentsDelete
PiranhaAdmin ContentApi GetBlockTypes PiranhaAdmin
PiranhaAdmin ContentApi CreateBlockAsync PiranhaAdmin
PiranhaAdmin ContentApi CreateRegionAsync PiranhaAdmin
PiranhaAdmin ContentApi List PiranhaContent
PiranhaAdmin ContentApi Get PiranhaContent
PiranhaAdmin ContentApi Create PiranhaContentAdd
PiranhaAdmin ContentApi Save PiranhaContentSave
PiranhaAdmin ContentApi Delete PiranhaContentDelete

Table 4: Fragment of entries stored by the predefined and custom rule dictionaries.

Key Value Comment
.**.Where.* The system queries a regular expression key in the

predefined rules map
Single The system retrieves

a single entry from
a simple key in the predefined

rules map

Language
Service

Languages a simple key in the custom rules
map to rename a class

On the other hand, the custom rules dictionary allows for customizing the transformation

process by REC-MVC by manually 1) defining custom mapping entries and/or 2) overriding existing

rules defined by the predefined rules dictionary. For instance, the custom rules dictionary can be

used to map variable names into a readable form. It should be noted that multiple rules from both

dictionaries can be matched during the transformation process. In such cases, REC-MVC applies

matched rules from the custom rules dictionary over the predefined rules dictionary. Furthermore,

if multiple rules are matched from the same dictionary, REC-MVC applies the first matching rule

based on the entry index in the list.

http://TuEngr.com Page | 12

Figure 5: Code snippet showing implementation details of REC-MVC for recovering use case diagrams.

http://TuEngr.com Page | 13

Figure 6: Piranha CMS Controller code snippet. (obtained from https://piranhacms.org).

5.3 Refining use Case Recovery Through Dynamic Analysis
In the previous section, REC-MVC relies on static analysis for recovering the details of

Piranha CMS Use Cases. However, one limitation of static analysis is the recovery of operation

invocations that can only be resolved at the run time of the MVC web application due to dynamic

dispatching and polymorphic operations.

http://TuEngr.com Page | 14

For instance, Piranha CMS provides multiple mechanisms for handling media content.

Therefore, the IStorage interface defines common operations, such as opening a new storage

session and getting a resource name, for such mechanisms. Different storage mechanisms are then

implemented by different concrete classes that realize the IStorage interface such that each class

defines the actual behavior for a specific mechanism. For instance, the FileStorage class implements

the IStorage interface for handling media content on the webserver hosting the actual MVC web

application. On the other hand, the BlobStorage class implements the IStorage interface for

handling media content stored on the cloud via a service provider.

Figure 7: Recovered Use Case diagram of Piranha CMS. Actors and Use Cases in this diagram are
associated based on their colors.

http://TuEngr.com Page | 15

Since such concrete classes define different behaviors of the same operations and invocation

of concrete operations can only be resolved at runtime due to dynamic dispatching, then the details

of some Use Cases cannot be fully discovered by REC-MVC by relying solely on static analysis.

Furthermore, different mechanisms may represent mutually exclusive or alternative functionality

such that only a subset of these mechanisms are configured to be part of the running MVC web

application. For instance, although both FileStorage and BlobStorage are available statically, it is

possible to configure the MVC web application at deployment time to only use FileStorage.

Therefore, to enhance the Use Case model recovery process, the MVC web application is

instrumented to collect execution traces related to method invocations. REC-MVC then performs

dynamic analysis guided by results obtained from the previous activities as follows:

1) Run the instrumented MVC web application.
2) If the recovered use case indicates an authorization privilege is needed to access the use case,

log into the system as a user with the appropriate authorization privileges.
3) Execute the use case by accessing the action that corresponds to this use case.
4) Collect runtime information for this run.
5) Analyze the runtime information and generate the updated Use Case details 1.

6 Discussion and Threat to Validity
The proposed approach is based on architectural patterns such as the MVC and SOA patterns

which are widely adopted in web applications. Since UML Use Case models are by nature abstract

and do not involve implementation details, then recovery of such models from an architectural

point of view provides an appropriate level of abstraction.

The proposed approach assumes that Use Case model concepts, such as the Include and

Extend relationships, are mapped to and implemented through specific design concepts, such as

the Layer Supertype pattern. Indeed, such concepts can be implemented differently at a more

detailed level such as the invocation of utility class libraries. In this case, the proposed approach

does not recover such concepts. Nevertheless, essential concepts such as actors and use cases can

be recovered by the proposed approach since these concepts are reflected at the architectural level.

Figure 8: Example of recovered Use Case specification by REC-MVC.

Automatic recovery of Use Case details via static analysis of source code can be a challenging

task. This is due to reasons such as complex flow of control (e.g. nested conditional statements)

http://TuEngr.com Page | 16

and complex business logic and processing. As a result, classifying nodes in the syntax tree as

shown in section IV.C can be non-trivial. In addition, recovering the extended relationship as

shown in section IV by statically analyzing redirects is challenging, since request redirects can be

implemented at the View level or the frontend (e.g. javascript) of the web application. In such

cases, the involvement of domain experts is needed to refine the recovered Use Case details.

The implementation of REC-MVC described in section V is platform-dependent since

Piranha MVC is implemented using the C# language. However since the proposed approach is based

on architectural- and design patterns, such concepts are platform-independent. Therefore, re-

implementing REC-MVC to target other platforms (e.g. Spring MVC Framework) can be achieved

with these patterns.

7 Conclusion
It has become common to construct software systems from architectural- and design

patterns since these patterns promote acceptable solutions by researchers and practitioners to

recurring problems that appear in specific contexts. This paper discussed a hybrid approach for

recovering Use Case models for MVC web applications in which recovery patterns are defined from

architectural- and design patterns that are widely used to construct web applications. Each

recovery pattern shows how a specific Use Case model element is to be recovered. Static and

dynamic analyses of the MVC web application are then performed according to defined recovery

patterns to recover the complete Use Case model of the web application. The proposed approach

has been implemented as a proof-of-concept tool, title REC-MVC, and applied to recover the Use

Case model of an open-source MVC web application.

Our future work includes investigating recovery patterns in other domains such as real-time

and embedded software systems which may adopt different architectural patterns, including

control and master/slave patterns. Furthermore, we are interested in investigating the recovery of

non-functional requirements such as security and performance, including response time and

throughput, of software systems. Finally, we are interested in investigating challenges related to

the recovery of Use Case models for software product lines in which products of the same family

may vary in the provided functionality.

8 Availability of Data and Material
Data can be made available by contacting the corresponding author.

9 References
A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, "An exploratory study of how developers seek, relate, and

collect relevant information during software maintenance tasks," IEEE Trans. Softw. Eng., vol. 32, no. 12,
pp. 971–987, Dec. 2006.

F. U. Rehman, B. Maqbool, M. Q. Riaz, U. Qamar and M. Abbas, "Scrum software maintenance model: efficient
software maintenance in Agile methodology," 2018 21st Saudi Computer Society National Computer
Conference (NCC), Riyadh, 2018, pp. 1-5, DOI: 10.1109/NCG.2018.8593152.

A. M. Fernández-Sáez, D. Caivano, M. Genero and M. R. V. Chaudron, "On the use of UML documentation in
software maintenance: Results from a survey in industry," 2015 ACM/IEEE 18th International Conference

http://TuEngr.com Page | 17

on Model Driven Engineering Languages and Systems (MODELS), Ottawa, ON, 2015, pp. 292-301, DOI:
10.1109/MODELS.2015.7338260.

L. Moreno, "Summarization of complex software artifacts," 2014 Companion Proceedings of the 36th
International Conference on Software Engineering (ICSE Companion 2014)," Association for Computing
Machinery, New York, NY, USA, 654–657. DOI: 10.1145/2591062.2591096.

A. M. Fernández-Sáezez, M.R.V. Chaudron and M. Genero, “An industrialcase study on the use of UML in
software maintenance and its perceivedbenefits and hurdles”, Empirical Software Engineering, pp.
32813345,2018. DOI: 10.1007/s10664-018-9599-4.

C. S. Joanna Santos, S. Moshtari and M. Mirakhorli, "An Automated Approach to Recover the Use-case View of
an Architecture," 2020 IEEE International Conference on Software Architecture Companion (ICSA-C),
Salvador, Brazil, 2020, pp. 63-66, doi: 10.1109/ICSAC50368.2020.00020.

L. Ceponiene, V. Drungilas, M. Jurgelaitis, J. Ceponis, "Method for reverse engineering UML Use Case model for
websites," Information Technology And Control. 2018, vol. 47, no. 4, doi: 10.5755/j01.itc.47.4.21264.

E. Miranda, M. Berón, G Montejano, D. Riesco, "Using reverse engineering techniques to infer a system use case
model," Journal of Software: Evolution and Process. 2018, vol. 31, no. 2, doi: 10.1002/smr.2121.

L. Zhang, T. Qin, Z. Zhou, D. Hao, "Identifying use cases in source code," J Syst Softw. Journal of Systems and
Software, vol. 79., 1588-1598, 2006.

P. Dugerdil, D. Sennhauser, "Dynamic decision tree for legacy use-case recovery," In Proceedings of the 28th
Annual ACM Symposium on Applied Computing (SAC ’13), Association for Computing Machinery, New
York, NY, USA, 2013 1284–1291.

B. Ulziit, Z. A. Warraich, C. Gencel, K. Petersen, "A conceptual framework of challenges and solutions for
managing global software maintenance," J. Softw. Evol. and Proc., 27: 763– 792, 2015.

OMG. “The Unified Modeling Language. Documents associated with UML version 2.3,” 2010.
http://www.omg.org/spec/UML/2.3.

H. Gomaa, "Software Modeling and Design: UML, Use Cases, Patterns, and Software Architectures," Cambridge:
Cambridge University Press, 2011.

Q. Li, S. Hu, P. Chen, L. Wu and W. Chen, "Discovering and Mining Use Case Model in Reverse Engineering,"
4th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD 2007), Haikou, 2007, pp.
431-436, DOI: 10.1109/FSKD.2007.255.

J. Bucanek, Model-View-Controller Pattern. In: Learn Objective-C for Java Developers. Apress, 2009.

M. Fowler. Patterns of Enterprise Application Architecture, AddisonWesley Professional, 2002.

M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann, and P. Sommerlad, P., Security Patterns;
Integrating Security and Systems Engineering, John Wiley Sons, Inc., 2005, Hoboken, NJ, USA.

Dr.Emad Albassam is an Assistant Professor at the Computer Science Department, King Abdulaziz University. He is a Vice
Dean for Applications at the Deanship of Information Technology. He received a B.S. degree in Computer Science from
King Abdulaziz University, Saudi Arabia. He received an M.S, and a Ph.D. in Software Engineering and Information
Technology with Software Engineering concentration, respectively, from George Mason University, Fairfax, Virginia. His
research interests include Software Engineering, Autonomous Software Systems, Software Product Lines, and Video Game
Development.

	A Hybrid Approach for Recovering Use Case Models of MVC Web Applications
	1 Introduction
	2 Related Work
	3 Architectural- and Design-Patterns for Web Applications: Background
	3.1 Model-View-Controller (MVC) Architectural-Pattern
	3.2 Service-Oriented Architecture (SOA)
	3.3 Role-Based Access Control (RBAC)
	3.4 Layer Supertype Pattern

	4 Recovery Patterns For MVC Web Applications
	4.1 Recovery of Actors
	4.2 Recovery of Use Cases and Their Relationships
	4.3 Recovery of Use Case Details

	5 Validation
	5.1 REC-MVC: Recovering use Case Diagram via Reflection of MVC Web Applications
	5.2 REC-MVC: Recovery of Use Case Details Via Static Analysis
	5.3 Refining use Case Recovery Through Dynamic Analysis

	6 Discussion and Threat to Validity
	7 Conclusion
	8 Availability of Data and Material
	9 References

