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Abstract 
In this article, a specialized empirical Bayes estimator for the panel 
data model is applied to real-world data. This estimator is suitable for 

all the standard classical panel data models. In this study, the simple linear 
regression model with orthogonal regressors has been used, and the 
coefficients for the ith unit of the panel have been estimated individually 
and independently, that is, the intercepts and the slopes coefficients for 
each unit of the panel are estimated as scalar quantities rather than a vector 
of both. The estimator used here is, “the precision weighted arithmetic 
mean of the ordinary least squares coefficient estimates of the kth regressor 
across all the units of the panel as the estimate of the prior mean and the 
Zellner’s g-prior is used as the estimate of the prior variance and the 
resultant prior precision”. By taking different values by the prior precision 
parameter, it has the potential to produce all the standard frequentist panel 
data linear regression model estimators. The estimate of the prior precision 
parameter is obtained from the data corresponding to all units of the panel 
therefore, it is considered to be the most reliable. 
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1 Introduction 
This article is mainly concerned with the procedure related to the application of a 

specialized empirical Bayes estimation technique to real-world panel data. For this purpose, we 
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take a real-world problem, in order, to show the procedure for the estimation and the analysis of 

the regression coefficients in a simple panel data linear regression model. In econometrics, there 

are three main forms of data: cross-sectional data, time-series data, and panel data. The panel data 

is the combination of cross-sectional data and time-series data. Panel data econometrics has 

evolved rapidly over the last few decades and researchers often deal in econometrics using panel 

data in the analysis of the relationship between variables. According to Hsiao (2007), the panel data 

is preferred and considered better in characteristics over either pure time-series data or purely 

cross-sectional data, because it considers both sources of variation in the data, i.e., the time 

dimension as well as the cross-sectional dimension. Chang et al. (2000) prescribe the facts of the 

econometric model as follows: (i) in economic relationships, the true functional forms of the 

models are almost unknown; (ii) from every econometric model, at least one unrevealed 

explanatory variable is excluded; (iii) it is very baseless or futile to assume that the excluded 

explanatory variables are uncorrelated with the candidate explanatory variables of the model; (iv) 

economic data are subject to measurement error in many cases, so that is why they are only the 

approximate values to the underlying exact values. Further, if an econometric model is consistent 

with all of the above realities of the building of an economic model, then it would be causal and 

meaningful, in other words, the elucidations attached to the model parameters are reliable with 

realism. The most commonly used standard panel data models can be found in Arellano (2003), 

Greene (2003), Gujrati (2003), etc. 

In the classical or frequentist panel data framework, before model selection, the pretesting 

like Hausman (1978), specification test for the model specification is mandatory. After getting 

some evidence in favor of a particular panel data model, the estimation and other analytical 

procedures are carried out accordingly. In most instances, these pretesting procedures do not work, 

and of works but the reliabilities of these tests have also been criticized in the literature (see Clark 

and Linzer, 2015), and thus the risk of misspecification of models always exists. 

On the other hand, in the Bayesian set-up, with the help of this specialized empirical Bayes 

estimation technique, pretesting for model selection is not required. In this procedure, the prior 

precision parameter is of great importance.  Taking different values by the prior precision 

parameter yields different models and their estimates. In this set up the prior precision parameter 

is estimated from the data corresponding to all units of the panel and hence the estimate so 

obtained is considered to be the most reliable. Because all the data points, rather than data related 

to any individual unit of the panel, have contributed in the estimation process.  

The basic empirical Bayes estimator from (Zaman, 1996) with (Zellner’s, 1971) g-priors is 

𝐸𝐸𝐸𝐸��̂�𝛽𝑘𝑘𝑖𝑖 � = ���𝐷𝐷𝑃𝑃𝑘𝑘� �𝑖𝑖 + 𝜌𝜌�𝑘𝑘  �𝐷𝐷𝑃𝑃𝑘𝑘� �𝑖𝑖�
−1

  ��𝐷𝐷𝑃𝑃𝑘𝑘� �𝑖𝑖�̂�𝛽𝑘𝑘𝑖𝑖 + 𝜌𝜌�𝑘𝑘  �𝐷𝐷𝑃𝑃𝑘𝑘� �𝑖𝑖B�𝑘𝑘��, 

For analogous representation see Zaman (1996) or Carrington and Zaman (1994). Here, 

�𝐷𝐷𝑃𝑃𝑘𝑘� �𝑖𝑖  is the estimate of the data precision of the 𝑘𝑘𝑡𝑡ℎ regression coefficient of the model 
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corresponding to the 𝑖𝑖𝑡𝑡ℎ unit of the panel, 𝜌𝜌𝑘𝑘 �𝐷𝐷𝑃𝑃𝑘𝑘� �𝑖𝑖  is the estimate of the prior precision of the 𝑘𝑘𝑡𝑡ℎ 

regression coefficient of the model corresponding to the 𝑖𝑖𝑡𝑡ℎ unit of the panel, while 𝜌𝜌�𝑘𝑘 is the 

estimate of the prior precision parameter of 𝑘𝑘𝑡𝑡ℎ regression coefficient of the model corresponding 

to the 𝑖𝑖𝑡𝑡ℎ unit of the panel, �̂�𝛽𝑘𝑘𝑖𝑖  is the data mean of the 𝑘𝑘𝑡𝑡ℎ regression coefficient of the model 

corresponding to the 𝑖𝑖𝑡𝑡ℎ unit of the panel, B�𝑘𝑘  is the prior mean of the 𝑘𝑘𝑡𝑡ℎ regression coefficient of 

the model corresponding to the 𝑖𝑖𝑡𝑡ℎ unit of the panel. 

Now it can be very easily seen that if the estimate of the prior precision parameter 

corresponding to each regression coefficient in the model has a very low numerical value, i.e., if 𝜌𝜌�𝑘𝑘 

= 0, then the specialized empirical Bayes estimator will have the inclination towards the individual 

models, one for each unit of the panel. Similarly, if the estimate of the prior precision parameter 

corresponding to each regression coefficient in the model has a very high numerical value, i.e., if 

𝜌𝜌�𝑘𝑘 = ∞, then the specialized empirical Bayes estimator will have the disposition towards a pooled 

model, which will be common to all units of the panel. Further, if the estimate of the prior precision 

parameter corresponding to each regression coefficient in the model has a very high numerical 

value except for the intercept, and the intercept has a very low numerical value, then the 

specialized empirical Bayes estimator will have the temperament toward the fixed effects model. 

Furthermore, if the estimate of the prior precision parameter corresponding to each coefficient in 

the model has neither a very low numerical value nor very high, then the specialized empirical 

Bayes estimator will have the spirit of the random coefficients model. Finally, if the estimate of the 

prior precision parameter corresponding to each coefficient in the model has a very high numerical 

value except for the intercept, and the intercept has neither very low numerical value nor very high, 

then the specialized empirical Bayes estimator will have the temperament towards the random-

effects model. 

In this piece, we show a single regression coefficient estimation procedure for orthogonal 

regressors of panel data models. This procedure is based on the specialized empirical Bayes 

estimation technique. As stated above, this approach itself will display the tendency of the panel 

data models and the corresponding empirical Bayes estimates. In more simple words, with the help 

of this specialized empirical Bayes technique, the data itself will lead to the most appropriate 

model(s) and the corresponding estimates, i.e., whether the data can be the best fit by the 

individual models corresponding to each unit of the panel, or whether the data can be the best fit 

by a pooled model common to all units of the panel, or the data can be the best fit by the fixed 

effects, random effects or random coefficients, etc. 

2 Method 
The Keynesian consumption function or the simple linear regression model with two 

regressors, i.e., the column of one’s for the intercept and the GDP, is given as 

𝑐𝑐𝑡𝑡𝑖𝑖 = 𝑦𝑦1𝑡𝑡𝑖𝑖  𝛽𝛽1𝑖𝑖  + 𝑦𝑦2𝑡𝑡𝑖𝑖  𝛽𝛽2𝑖𝑖  + 𝜖𝜖𝑡𝑡𝑖𝑖  (1), 
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where, 𝑐𝑐𝑡𝑡𝑖𝑖  denotes the consumption of the 𝑖𝑖𝑡𝑡ℎ country at 𝑖𝑖𝑡𝑡ℎ time period, 𝑦𝑦1𝑡𝑡𝑖𝑖  denotes, the constant 1 

for the intercept term of the 𝑖𝑖𝑡𝑡ℎ country at 𝑖𝑖𝑡𝑡ℎ time period, 𝑦𝑦2𝑡𝑡𝑖𝑖  denotes the GDP of the 𝑖𝑖𝑡𝑡ℎ country at 

𝑖𝑖𝑡𝑡ℎ time period, 𝜖𝜖𝑡𝑡𝑖𝑖   denotes the random errors of the 𝑖𝑖𝑡𝑡ℎ country at 𝑖𝑖𝑡𝑡ℎ time period, 𝛽𝛽1𝑖𝑖  denotes the 

intercept term of the 𝑖𝑖𝑡𝑡ℎ country, and 𝛽𝛽2𝑖𝑖  denotes the slope coefficient of the 𝑖𝑖𝑡𝑡ℎ country. 

2.1 Matrix Form of the Variables 
The matrix structures of the variables in Equation (1) are given as 

𝐶𝐶𝑖𝑖  = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐶𝐶1

𝑖𝑖

𝐶𝐶2𝑖𝑖
⋮
𝐶𝐶𝑡𝑡𝑖𝑖
⋮
𝐶𝐶𝑇𝑇𝑖𝑖 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝑇𝑇 ×1 

, 𝑌𝑌1𝑖𝑖 =   

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑦𝑦11

𝑖𝑖 = 1
𝑦𝑦12𝑖𝑖 = 1

⋮
𝑦𝑦1𝑡𝑡𝑖𝑖 = 1

⋮
𝑦𝑦1𝑇𝑇𝑖𝑖 = 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑇𝑇 ×1 

, 𝑌𝑌2𝑖𝑖 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝑦𝑦21

𝑖𝑖

𝑦𝑦22𝑖𝑖
⋮
𝑦𝑦2𝑡𝑡𝑖𝑖
⋮
𝑦𝑦2𝑇𝑇𝑖𝑖 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑇𝑇 × 1 

, (1.1a). 

Let 

𝑌𝑌𝑖𝑖 = [𝑌𝑌1𝑖𝑖 �̇�𝑌2𝑖𝑖] (1.1b). 

Then, the expended matrix form of 𝑌𝑌𝑖𝑖 in Equation (1.1b), get the form 

𝑌𝑌𝑖𝑖= 

⎣
⎢
⎢
⎢
⎢
⎢
⎡1
1
⋮
1
⋮
1

 

𝑦𝑦21𝑖𝑖

𝑦𝑦22𝑖𝑖
⋮
𝑦𝑦2𝑡𝑡𝑖𝑖
⋮
𝑦𝑦2𝑇𝑇𝑖𝑖 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑇𝑇 ×2 

 (1.1c). 

To orthogonalize the intercept and the slopes coefficients, we centralize 𝑌𝑌2𝑖𝑖 in Equation 

(1.1a) and get 

�̇�𝑌2𝑖𝑖 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡�̇�𝑦21

𝑖𝑖

�̇�𝑦22𝑖𝑖
⋮
�̇�𝑦2𝑡𝑡𝑖𝑖
⋮
�̇�𝑦2𝑇𝑇𝑖𝑖 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑇𝑇 ×1 

  (1.1d), 

where, �̇�𝑦2𝑡𝑡𝑖𝑖  =  �𝑦𝑦2𝑡𝑡𝑖𝑖 −  𝑦𝑦�2𝑖𝑖 �, the top-head dot is to differentiate the centralized �̇�𝑦2𝑡𝑡𝑖𝑖  from the simple 

𝑦𝑦2𝑡𝑡𝑖𝑖 .  After centralization of 𝑌𝑌2𝑖𝑖, Equation (1.1c) can now be written as 

�̇�𝑌𝑖𝑖 = 

⎣
⎢
⎢
⎢
⎢
⎢
⎡1
1
⋮
1
⋮
1

 

�̇�𝑦21𝑖𝑖

�̇�𝑦22𝑖𝑖
⋮
�̇�𝑦2𝑡𝑡𝑖𝑖
⋮
�̇�𝑦2𝑇𝑇𝑖𝑖 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

𝑇𝑇 ×2 

 (1.1e). 

After the centralization, we present the modified model in the next section. 
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2.2 The Modified Model After Centralization 
This model is the modified model after the centralization of 𝑌𝑌2𝑖𝑖. 

𝐶𝐶𝑡𝑡𝑖𝑖  = 𝑦𝑦1𝑡𝑡𝑖𝑖  𝛽𝛽1𝑖𝑖  + �𝑦𝑦2𝑡𝑡𝑖𝑖 −  𝑦𝑦�2𝑖𝑖� 𝛽𝛽2𝑖𝑖  + 𝜖𝜖𝑡𝑡𝑖𝑖,  (1.2a) 

𝐶𝐶𝑡𝑡𝑖𝑖  = 𝑦𝑦1𝑡𝑡𝑖𝑖  𝛽𝛽1𝑖𝑖  + �̇�𝑦2𝑡𝑡𝑖𝑖  𝛽𝛽2𝑖𝑖  + 𝜖𝜖𝑡𝑡𝑖𝑖,  (1.2b) 

where 

�̇�𝑦2𝑡𝑡𝑖𝑖  = �𝑦𝑦2𝑡𝑡𝑖𝑖 −  𝑦𝑦�2𝑖𝑖� (1.2c) 

2.3 Some Basic Quantities 
We present some of the important quantities that are needed for this estimation process. 

2.3.1 The Model Parameters Estimates 
To estimate the model (1.2b) parameters, we have the ordinary least squares coefficients 

estimate. Let this may be denoted by �̂�𝛽𝑖𝑖  

�̂�𝛽𝑖𝑖  = ��̇�𝑌𝑖𝑖′�̇�𝑌𝑖𝑖�−1�̇�𝑌𝑖𝑖′𝐶𝐶𝑖𝑖   (2.1a) 

��̂�𝛽𝑖𝑖� = ��̂�𝛽1
𝑖𝑖

�̂�𝛽2𝑖𝑖
� (2.1b) 

These �̂�𝛽1𝑖𝑖   and �̂�𝛽2𝑖𝑖  are now the ordinary least squares coefficients estimates for the intercept 

term and the slope coefficients of model parameters (1.2b), respectively. We also need the variance 

of the ordinary least squares coefficients estimates. In the next section, we present the data 

variances of the ordinary least squares coefficients estimates. 

2.3.2 The Data Variance of the Model Parameters Estimates 
As mentioned, we need the data variances of the model parameters i.e., the variances of the 

ordinary least squares coefficients estimate, therefore, by definition, 

𝐷𝐷𝐷𝐷��̂�𝛽𝑖𝑖� = (𝜎𝜎2)𝑖𝑖��̇�𝑌𝑖𝑖′�̇�𝑌𝑖𝑖�−1  (2.2a), 

further, by definition,  

(𝜎𝜎2)𝑖𝑖 =  �𝜖𝜖𝑡𝑡
𝑖𝑖′𝜖𝜖𝑡𝑡𝑖𝑖
𝑇𝑇−𝐾𝐾� (2.2b), 

and in this orthogonal case, we have 

��̇�𝑌𝑖𝑖′�̇�𝑌𝑖𝑖� = �
𝑇𝑇 0
0 ∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡=1

� (2.2c), 

and  

��̇�𝑌𝑖𝑖′�̇�𝑌𝑖𝑖�−1 = �
(𝑇𝑇)−1 0

0 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 �
−1� (2.2d) 

thus finally, 
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(𝜎𝜎2)𝑖𝑖��̇�𝑌𝑖𝑖′�̇�𝑌𝑖𝑖�−1 = (𝜎𝜎2)𝑖𝑖  �
(𝑇𝑇)−1 0

0 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 �
−1�  (2.2e) 

or 

(𝜎𝜎2)𝑖𝑖��̇�𝑌𝑖𝑖′�̇�𝑌𝑖𝑖�−1 =  �
(𝜎𝜎2)𝑖𝑖(𝑇𝑇)−1 0

0 (𝜎𝜎2)𝑖𝑖 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 �
−1� (2.2f), 

and thus 

𝐷𝐷𝐷𝐷��̂�𝛽𝑖𝑖� =  �
(𝜎𝜎2)𝑖𝑖(𝑇𝑇)−1 0

0 (𝜎𝜎2)𝑖𝑖 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 �
−1� (2.2g). 

In Equation (2.2g), the left-hand top diagonal or the first diagonal, quantity is the variance 

of the first regression coefficient estimate, i.e., the intercept while the right-hand bottom diagonal 

or the second diagonal, quantity is the variance of the second regression coefficient estimate, i.e., 

the slope.  

Let, 𝐷𝐷𝐷𝐷��̂�𝛽1𝑖𝑖� denotes the data variance of the first regression coefficient and 𝐷𝐷𝐷𝐷��̂�𝛽2𝑖𝑖� denotes 

the data variance of the second regression coefficient.  Then, 

𝐷𝐷𝐷𝐷��̂�𝛽1𝑖𝑖� = (𝜎𝜎2)𝑖𝑖(𝑇𝑇)−1 (2.2h), 

and 

𝐷𝐷𝐷𝐷��̂�𝛽2𝑖𝑖� = (𝜎𝜎2)𝑖𝑖 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 �
−1

 (2.2i). 

On the basis of these quantities, we show the corresponding data precisions in next section. 

2.3.3 The Data Precision of the Model Parameters Estimates  
On the basis of the data variances, the corresponding data precisions, which are denoted by 

𝐷𝐷𝑃𝑃��̂�𝛽1𝑖𝑖� and 𝐷𝐷𝑃𝑃��̂�𝛽2𝑖𝑖� respectively for both of the regression coefficient estimates become 

𝐷𝐷𝑃𝑃��̂�𝛽1𝑖𝑖� = �(𝜎𝜎2)𝑖𝑖�−1𝑇𝑇 (2.3a), 

and 

𝐷𝐷𝑃𝑃��̂�𝛽2𝑖𝑖� = �(𝜎𝜎2)𝑖𝑖�−1 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 �  (2.3b). 

Further, we describe the data densities for both coefficients estimates. 

2.3.4 The Data Densities for Both of the Coefficients Estimates 
The data density in terms of means and variances of �̂�𝛽1𝑖𝑖  is 

�̂�𝛽1𝑖𝑖   
𝐼𝐼𝐼𝐼𝐷𝐷
~  𝑁𝑁 �𝛽𝛽1𝑖𝑖  ,𝐷𝐷𝐷𝐷��̂�𝛽1𝑖𝑖�� (2.4a). 

Thus, �̂�𝛽1𝑖𝑖 is normally distributed with mean 𝛽𝛽1𝑖𝑖  and variance 𝐷𝐷𝐷𝐷��̂�𝛽1𝑖𝑖�, and similarly, the data 

density in terms of means and variances of �̂�𝛽2𝑖𝑖  is also given as 
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�̂�𝛽2𝑖𝑖   
𝐼𝐼𝐼𝐼𝐷𝐷
~  𝑁𝑁 �𝛽𝛽2𝑖𝑖  ,𝐷𝐷𝐷𝐷��̂�𝛽2𝑖𝑖��  (2.4b). 

Thus, �̂�𝛽2𝑖𝑖  is normally distributed with mean 𝛽𝛽2𝑖𝑖  and variance 𝐷𝐷𝐷𝐷��̂�𝛽2𝑖𝑖�. Now in the following 

section, we describe the prior densities too. 

2.3.5 The Prior Densities of Both Regression Coefficients 
The prior density in terms of mean and variance of 𝛽𝛽1𝑖𝑖  is 

𝛽𝛽1𝑖𝑖  
𝐼𝐼𝐼𝐼𝐷𝐷
~  𝑁𝑁 � B1, Λ1𝑖𝑖 � (2.5a), 

and similarly, the prior density in terms of mean and variance of 𝛽𝛽2𝑖𝑖  is 

𝛽𝛽2𝑖𝑖  
𝐼𝐼𝐼𝐼𝐷𝐷
~  𝑁𝑁 � B2,Λ2𝑖𝑖 � (2.5b). 

Here, B1 and B2 denotes the prior means of 𝛽𝛽1𝑖𝑖  and 𝛽𝛽2𝑖𝑖 , i.e., the 1𝑠𝑠𝑡𝑡 and 2𝑛𝑛𝑛𝑛 regression 

coefficient in the model respectively, and Λ1𝑖𝑖  and Λ2𝑖𝑖  denotes the prior variances of 𝛽𝛽1𝑖𝑖  and 𝛽𝛽2𝑖𝑖  
respectively.  

Let 

(𝑃𝑃𝐷𝐷1)𝑖𝑖  = Λ1𝑖𝑖 ,  (2.5c), 

and 

(𝑃𝑃𝐷𝐷2)𝑖𝑖 = Λ2𝑖𝑖 ,  (2.5d). 

2.4 Computation of the Prior Variance 
To use Zellner’s (1971) g-priors in general and the g-prior precision in specific, let us define 

the g-prior precision for both of the regression coefficients.  

By the definition of the g-prior, the g-prior variance is proportional to the data variance. In 

our case, 

(𝑃𝑃𝐷𝐷1)𝑖𝑖 ∝ 𝐷𝐷𝐷𝐷��̂�𝛽1𝑖𝑖�   (2.6a), 

or 

(𝑃𝑃𝐷𝐷1)𝑖𝑖 = 𝜌𝜌1−1𝐷𝐷𝐷𝐷��̂�𝛽1𝑖𝑖�  (2.6b) 

and 

(𝑃𝑃𝐷𝐷2)𝑖𝑖 ∝ 𝐷𝐷𝐷𝐷��̂�𝛽2𝑖𝑖�   (2.6c) 

or 

(𝑃𝑃𝐷𝐷2)𝑖𝑖 = 𝜌𝜌2−1𝐷𝐷𝐷𝐷��̂�𝛽2𝑖𝑖�  (2.6d). 

Now plugging the value of 𝐷𝐷𝐷𝐷��̂�𝛽1𝑖𝑖� and 𝐷𝐷𝐷𝐷��̂�𝛽2𝑖𝑖� from (2.3a) and (2.3b) in (2.6c) and (2.6d) 

respectively, we have 

(𝑃𝑃𝐷𝐷1)𝑖𝑖 = 𝜌𝜌1−1�(𝜎𝜎2)𝑖𝑖(𝑇𝑇)−1�  (2.6e), 

(𝑃𝑃𝐷𝐷2)𝑖𝑖 = 𝜌𝜌2−1 �(𝜎𝜎2)𝑖𝑖 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 �
−1
� (2.6f). 
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2.4.1 The Prior Precisions 
Let, (𝑃𝑃𝑃𝑃1)𝑖𝑖  and (𝑃𝑃𝑃𝑃2)𝑖𝑖 denote the two prior precisions respectively, then, in terms of 

precision (2.6e) and (2.6f) can also be expressed as 

(𝑃𝑃𝑃𝑃1)𝑖𝑖 = 𝜌𝜌1 ��(𝜎𝜎2)𝑖𝑖�−1𝑇𝑇 �  (2.7a), 

(𝑃𝑃𝑃𝑃2)𝑖𝑖  = 𝜌𝜌2 �(𝜎𝜎2)𝑖𝑖−1 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 � � (2.7b), 

where 

(𝑃𝑃𝑃𝑃1)𝑖𝑖 = �Λ1𝑖𝑖 �
−1

  (2.7c), 

and 

(𝑃𝑃𝑃𝑃)2𝑖𝑖  = �Λ2𝑖𝑖 �
−1

 (2.7d). 

Now, with the help of Equations (2.6e) and (2.6f), the prior densities of both of the 

coefficients are 

�̂�𝛽1𝑖𝑖   
𝐼𝐼𝐼𝐼𝐷𝐷
~  𝑁𝑁 �B1 , �𝜌𝜌1−1�(𝜎𝜎2)𝑖𝑖(𝑇𝑇)−1���  (2.7e) 

and 

𝛽𝛽2𝑖𝑖   
𝐼𝐼𝐼𝐼𝐷𝐷
~  𝑁𝑁 �B2 , �(𝜌𝜌2)−1(𝜎𝜎2)𝑖𝑖 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡=1 �

−1
��  (2.7f). 

2.5 The Marginal Densities of the Estimates  
Here, the marginal density for the 1𝑠𝑠𝑡𝑡 regression coefficient estimate becomes 

𝑚𝑚��̂�𝛽1𝑖𝑖�  
𝐼𝐼𝐼𝐼𝐷𝐷
~  𝑁𝑁 �B1 , ��(𝜎𝜎2)𝑖𝑖(𝑇𝑇)−1� + 𝜌𝜌1−1�(𝜎𝜎2)𝑖𝑖(𝑇𝑇)−1���  (3a). 

Now, we describe the marginal density for the 2𝑛𝑛𝑛𝑛 regression coefficient estimate, which 

becomes 

𝑚𝑚��̂�𝛽2𝑖𝑖�  
𝐼𝐼𝐼𝐼𝐷𝐷
~  𝑁𝑁 �B2 , ��(𝜎𝜎2)𝑖𝑖 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡=1 �

−1
� +  𝜌𝜌2−1 �(𝜎𝜎2)𝑖𝑖 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡=1 �

−1
��� (3b). 

2.6 The Estimates of the Prior Means 
We show the estimates of the prior means separately. First, we show the estimates of the 

prior mean for the intercept and then the estimates of the prior mean for the slope. 

2.6.1 The Estimates of the Prior Mean for the Intercept  
Now, the estimate of the prior mean B�1  for the first regression coefficient may be given as 

B�1 = 
∑ ����𝜎𝜎�12�

𝑖𝑖�
−1
𝑇𝑇 � + 𝜌𝜌�1  ���𝜎𝜎�12�

𝑖𝑖�
−1
𝑇𝑇 ��𝑁𝑁 

𝑖𝑖 = 1 𝛽𝛽�1𝑖𝑖

∑ ���𝜎𝜎�12�
𝑖𝑖�
−1
𝑇𝑇 � + 𝜌𝜌�1  ���𝜎𝜎�12�

𝑖𝑖�
−1
𝑇𝑇 �𝑁𝑁 

𝑖𝑖 = 1

 (4.1a) 

B�1 = 
∑ �(1 + 𝜌𝜌�1)���𝜎𝜎�12�

𝑖𝑖�
−1
𝑇𝑇 ��𝑁𝑁 

𝑖𝑖 = 1 𝛽𝛽�1𝑖𝑖

∑ �(1 + 𝜌𝜌�1)���𝜎𝜎�12�
𝑖𝑖�
−1
𝑇𝑇 ��

−1
𝑁𝑁 
𝑖𝑖 = 1

 (4.1b), 
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B�1 = 
(1 + 𝜌𝜌�1)∑ ���𝜎𝜎�12�

𝑖𝑖�
−1
𝑇𝑇 �𝑁𝑁 

𝑖𝑖 = 1 𝛽𝛽�1𝑖𝑖

(1 + 𝜌𝜌�1)∑ ���𝜎𝜎�12�
𝑖𝑖�
−1
𝑇𝑇 �𝑁𝑁 

𝑖𝑖 = 1

 (4.1c), 

B�1 = 
∑ ���𝜎𝜎�12�

𝑖𝑖�
−1
𝑇𝑇 �𝑁𝑁 

𝑖𝑖 = 1 𝛽𝛽�1𝑖𝑖

∑ ���𝜎𝜎�12�
𝑖𝑖�
−1
𝑇𝑇 �𝑁𝑁 

𝑖𝑖 = 1

  (4.1d). 

Here it is to be noted that, B�1 becomes independent of 𝜌𝜌�1.  

2.6.2 The Estimates of the Prior Mean for the Slope  
Also, the estimate of the prior mean B2 for the second regressor may be given as follow, 

B�2 = 
∑ ����𝜎𝜎�22�

𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ��+ 𝜌𝜌�2���𝜎𝜎�22�

𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ���𝑁𝑁 

𝑖𝑖 = 1 𝛽𝛽�2𝑖𝑖

∑ ���𝜎𝜎�22�
𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ��+ 𝜌𝜌�2���𝜎𝜎�22�

𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ��𝑁𝑁 

𝑖𝑖 = 1

 (4.2a), 

𝐸𝐸�2 = 
∑ �(1+  𝜌𝜌�2)���𝜎𝜎�22�

𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ���𝑁𝑁 

𝑖𝑖 = 1 𝛽𝛽�2𝑖𝑖

∑ �(1+  𝜌𝜌�2)���𝜎𝜎�22�
𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ���𝑁𝑁 

𝑖𝑖 = 1

 (4.2b), 

B�2 = 
(1+  𝜌𝜌�2)∑ ���𝜎𝜎�22�

𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ��𝑁𝑁 

𝑖𝑖 = 1 𝛽𝛽�2𝑖𝑖

(1+  𝜌𝜌�2)∑ ���𝜎𝜎�22�
𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ��𝑁𝑁 

𝑖𝑖 = 1

 (4.2c), 

B�2 = 
∑ ���𝜎𝜎�22�

𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ��𝑁𝑁 

𝑖𝑖 = 1 𝛽𝛽�2𝑖𝑖

∑ ���𝜎𝜎�22�
𝑖𝑖�
−1
�∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �

2𝑇𝑇
𝑡𝑡 = 1 ��𝑁𝑁 

𝑖𝑖 = 1

  (4.2d). 

Here again, it is to be noted that, B�2 becomes independent of 𝜌𝜌�2. 

2.7 The Specialized Empirical Bayes Estimates 
By applying the specialized empirical Bayes estimation technique, we obtain the empirical 

Bayes estimates without estimating the prior precision parameter, thus, the empirical Bayes 

estimates for the intercept term and the slope coefficients respectively, are described in the 

following sections.  

2.7.1 The Specialized Empirical Bayes Estimates for the Intercept 
To get rid of the estimation of the prior precision parameter, after some algebraic 

manipulation, the specialized empirical Bayes estimator can be obtained as 

𝐸𝐸𝐸𝐸��̂�𝛽𝑘𝑘𝑖𝑖 � = ��1 −  �∑ �
(𝑁𝑁−2)�𝐷𝐷𝐷𝐷�𝛽𝛽�𝑘𝑘

𝑖𝑖 ��

�𝛽𝛽�𝑘𝑘
𝑖𝑖− 𝐵𝐵�𝑘𝑘�

2 �𝑁𝑁
𝑖𝑖=1 �� �̂�𝛽𝑘𝑘𝑖𝑖 +  ��∑ �

(𝑁𝑁−2)�𝐷𝐷𝐷𝐷�𝛽𝛽�𝑘𝑘
𝑖𝑖 ��

�𝛽𝛽�𝑘𝑘
𝑖𝑖− 𝐵𝐵�𝑘𝑘�

2 �𝑁𝑁
𝑖𝑖=1 ��𝐸𝐸�𝑘𝑘� (5.1a). 

Modifying Equation (5.1a) for the intercept term only, we replace the subscript ‘𝑘𝑘’ by ‘1’ to 

get, 

𝐸𝐸𝐸𝐸��̂�𝛽1𝑖𝑖� = ��1 −  �∑ �(𝑁𝑁−2)�𝐷𝐷𝐷𝐷�𝛽𝛽�1𝑖𝑖��

�𝛽𝛽�1𝑖𝑖− 𝐵𝐵�1�
2 �𝑁𝑁

𝑖𝑖=1 �� �̂�𝛽1𝑖𝑖 + ��∑ �(𝑁𝑁−2)�𝐷𝐷𝐷𝐷�𝛽𝛽�1𝑖𝑖��

�𝛽𝛽�1𝑖𝑖− 𝐵𝐵�1�
2 �𝑁𝑁

𝑖𝑖=1 ��𝐸𝐸�1� (5.1b), 

or 
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𝐸𝐸𝐸𝐸��̂�𝛽1𝑖𝑖� = ��1 −  �∑ �
(𝑁𝑁−2)��𝜎𝜎�12�

𝑖𝑖(𝑇𝑇)−1�

�𝛽𝛽�1𝑖𝑖− 𝐵𝐵�1�
2 �𝑁𝑁

𝑖𝑖=1 �� �̂�𝛽1𝑖𝑖 +  ��∑ �
(𝑁𝑁−2)��𝜎𝜎�12�

𝑖𝑖(𝑇𝑇)−1�

�𝛽𝛽�1𝑖𝑖− 𝐵𝐵�1�
2 �𝑁𝑁

𝑖𝑖=1 �� 𝐸𝐸�1� (5.1c). 

Equation (5.1c) is the empirical Bayes estimate of the first regression coefficient i.e., the 

intercept term of the model independent of the prior precision parameter. 

2.7.2 The Specialized Empirical Bayes Estimate for the Slope 
Similarly, modifying Equation (5.1a) for the slope term only, we get, 

𝐸𝐸𝐸𝐸��̂�𝛽2𝑖𝑖� = ��1 −  �∑ �(𝑁𝑁−2)�𝐷𝐷𝐷𝐷�𝛽𝛽�2𝑖𝑖��

�𝛽𝛽�2𝑖𝑖− 𝐵𝐵�2�
2 �𝑁𝑁

𝑖𝑖=1 �� �̂�𝛽2𝑖𝑖 +  ��∑ �(𝑁𝑁−2)�𝐷𝐷𝐷𝐷�𝛽𝛽�2𝑖𝑖��

�𝛽𝛽�2𝑖𝑖− 𝐵𝐵�2�
2 �𝑁𝑁

𝑖𝑖=1 �� 𝐸𝐸�2� (5.2a) 

or 

𝐸𝐸𝐸𝐸��̂�𝛽2𝑖𝑖� = �1 −  �∑ �
(𝑁𝑁−2)��𝜎𝜎�22�

𝑖𝑖 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 �
−1
�

�𝛽𝛽�22𝑖𝑖 − 𝐵𝐵�2�
2 �𝑁𝑁

𝑖𝑖=1 �� �̂�𝛽2𝑖𝑖  

+ ��∑ �
(𝑁𝑁−2)��𝜎𝜎�22�

𝑖𝑖 �∑ ��̇�𝑦2𝑡𝑡𝑖𝑖 �
2𝑇𝑇

𝑡𝑡=1 �
−1
�

�𝛽𝛽�2𝑖𝑖− 𝐵𝐵�2�
2 �𝑁𝑁

𝑖𝑖=1 ��𝐸𝐸�2 (5.2b). 

Equation (5.2b) is the empirical Bayes estimate of the second regression coefficient i.e., the 

slope coefficient of the model. Now, it is very simple to find the empirical Bayes estimates from 

Equations (5.1c) and (5.2b). 

3 Result and Discussion 
In this study, we took the simple panel data linear regression model, for five European Union 

countries namely, Austria, France, Italy, Sweden, and Britain. The data was on two variables, i.e., 

gross domestic product ‘GDP’ and consumption for the period of 1970 to 2016. Each variable for 

each county consisted of 47 observations. The data had been taken from International Financial 

Statistics (IFS) data. The log transforms of the variables had been made in order, to condense the 

data. Further, the GDP as the regressor had been centralized, in order, to make the regressors 

orthogonal and bring about independence in the intercepts and slope coefficients. 

The most important aspect of this article is that here we are not interested in the economic 

characteristics of the variables related to the above countries, i.e., how and how much does a GDP 

of a country affect the consumption of the country, rather, we are interested the procedure of 

applying the specialized empirical Bayes technique of estimation to panel data linear regression 

models. Because this technique has the capability to be fitted to all standard panel data models. 

Therefore, the main focus of this article was around the procedure of application of this specialized 

empirical Bayes estimation for panel data models and not the other way around. 

Further, the procedure of the specialized empirical Bayes technique of estimation to 

multiple panel data linear regression models is the simple extension of the specialized empirical 

Bayes technique of estimation to simple panel data linear regression models. 
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Table 1: The Empirical Bayes Estimates for the Intercepts 
 Austria France Italy Sweden Britain 

Intercept Coefficient Estimates 0.2694 0.3012 0.2861 0.2767 0.2921 
Standard Error  of Intercepts 0.0097 0.0183 0.0234 0.0065 0.0203 

 
Table 2: Empirical Bayes Estimates for the Slopes 

 Austria France Italy Sweden Britain 
Slope Coefficient Estimates 0.9804 0.9436 0.9302 0.9338 0.9989 

Standard Error of Slopes 0.0084 0.0078 0.0064 0.0092 0.0074 

 
Table 3: The Empirical Bayes Coefficients Estimates for All Countries 

Country 
Intercept Slope 

Coefficients Estimates Standard Error of the 
Coefficients Estimates Coefficients Estimates Standard Error of the 

Coefficients Estimates 
Austria 0.2694 0.0097 0.9804 0.0084 
France 0.3012 0.0183 0.9436 0.0078 
Italy 0.2861 0.0234 0.9302 0.0064 

Sweden 0.2767 0.0065 0.9338 0.0092 
Britain 0.2921 0.0203 0.9989 0.0074 

 
Table 1 contains the estimates of the intercept with their corresponding standard errors for 

all the five countries of the analysis. Similarly, Table 2 contains the slopes with their corresponding 

standard errors for all the five countries of the analysis. Further, Table 3 contains the intercepts as 

well as the slopes with their corresponding standard errors simultaneously, for all the five countries 

of the analysis. Here as per the theoretical relationship between consumption and GDP the sign and 

magnitude of both the intercepts and the slopes seem very much consistent with the theory. Also, 

the coefficients estimates among different countries seem randomly fluctuate. 

4 Conclusion 
This study applied the empirical Bayes estimation techniques to the real-world data of five 

European Union countries, Austria, France, Italy, Sweden, and Britain. Further, the GDP as the 

regressor has been centralized, in view, to make the regressors orthogonal and attain independency 

in the intercepts and slope coefficients.  Thereafter, the whole procedure was described 

analytically. 

The salient features of the estimates are that we have not done any pretesting procedure for 

model selection and neither have decided in advance whether we fit the subject-specific coefficient 

model or the subject common coefficients model or any other model of the frequentist setup. 

Rather we estimated the coefficients for each unit by the specialized empirical Bayes estimator.  

The symbols and magnitudes of the coefficient estimates are in accordance with theory, the 

standard errors are also of acceptable size. Also, the coefficient estimates for different units are not 

too much different. If the common subject was appropriate then the two coefficients, i.e., the 

intercept and the slope would be identical for all units of the panel. 

The quality of the empirical Bayes estimate is that one does not need pretesting for model 

selection, the technique itself first designs the vectors of the coefficients estimates, and then 

resultantly the corresponding models can be framed. 
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5 Availability of Data and Material 
Data can be made available by contacting the corresponding author. 
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