
Page | 1

©2022 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies

ISSN 2228-9860 eISSN 1906-9642 CODEN: ITJEA8

Genetic-based Crow Search Algorithm
for Test Case Generation

A.Tamizharasi1*, P.Ezhumalai1

1 Department of Computer Science and Engineering, R.M.D. Engineering College, Kavaraipettai, Chennai, INDIA.
*Corresponding Author (Email: tamizh4384 @gmail.com).

Paper ID: 13A4K

Volume 13 Issue 4
Received 23 December 2021
Received in revised form 21
March 2022
Accepted 30 March 2022
Available online 07 April
2022
Keywords:
Software Testing; Test case
generation; Path coverage;
Genetic Algorithm; Crow
search algorithm, GBCSA,
Test case optimization;
Unified Modelling
Language (UML); Control
flow graph (CFG); Genetic
optimization.

Abstract
Generating test data for a complex domain is still a challenging area of
research in software testing, which builds the test suites for validating

the system. The quality of test cases generated decides the cost and
effectiveness of the software process, which drives this research to optimize
the test suites. Unified Model Language (UML) models depict the system
responses to a given scenario, so generating the test case from the models
would give maximum path coverage from start to finish. The proposed work
attempts to create optimized test data from the UML model at the early
stages of software development. The Hybrid Genetic and Crow Search
Algorithm (GBCSA) helps to optimize the test suite by removing the
redundant test data. This helps in maintaining a pool of solutions and directs
the search towards global optima, decreasing the likelihood of getting
trapped in the local optima. The experimental results show 100% path
coverage and time efficiency when compared with traditional crow search
and genetic optimization algorithms.

Disciplinary: Computer Science and Engineering.

©2022 INT TRANS J ENG MANAG SCI TECH.

Cite This Article:
Tamizharasi, A., Ezhumalai, P. (2022). Genetic-based Crow Search Algorithm for Test Case Generation.

International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies,
13(4), 13A4K, 1-11. http://TUENGR.COM/V13/13A4K.pdf DOI: 10.14456/ITJEMAST.2022.74

 Introduction 1
Testing plays a crucial part in assuring the quality of the released software product. Testing

time increases with respect to the project size and complexity. Testing includes test case design,

preparation, and implementation of test cases to validate the system, and, finally, comparison of

results. Generating optimized test data that covers the entire critical path is a big challenge in the

testing domain. Test cases help in determining whether the user requirements are met or not. Test

cases can be produced from both the user stories and the code as well. Testing the software after

the coding phase may give accurate results, but still delays the completion time. This work

International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies

http://TuEngr.com

http://TuEngr.com Page | 2

attempts to overcome the delay in project completion due to testing the project at a later stage. The

proposed approach generates the test cases at the earlier stages of development from the use cases.

This minimizes the errors and also simplifies the process of fixing them, which in turn reduces the

budget for software development.

Various test case generation methods include random approaches, goal-oriented, model-

based, etc. Generating test cases from Unified Model Language (UML) diagrams such as use case

diagrams, sequence diagrams, class diagrams, and Petri net diagrams is generally termed "model-

based testing." Model-driven software development employs design notations for software testing

[1,4]. A model describes the functionalities of the system under test (SUT). UML captures the

requirements from all different stakeholders’ perspectives. Usually, the test suite generated from

UML models is semi-formal [2, 3]. Model-based testing attempts to generate test cases that cover

all different possible paths of the system elements. This research work focuses mainly on

generating test suites that cover the maximum software system details with optimized test

scenarios to test the SUT. In the proposed approach, test suite generation starts with executing the

initial test cases, followed by using heuristic algorithms for generating additional test cases and

optimization.

 Literature Review 2
Pathik et al. [5] used a bio-inspired crow search algorithm that combined branch and

predicate distance to cover all possible paths, using a control flow graph (CFG) for creating the test

cases. The minimum independent path is computed using the cyclomatic complexity of the CFG.

Also, a combined fitness function is used for validating the effectiveness of the algorithm in

locating the best optimal solution. Asthana et al. [6] prioritized the test cases for regression testing.

The population-based meta-heuristic algorithm, called the Lion optimization algorithm, prioritized

the regression test suite based on the previous history of execution data of regression cycles. A

fault detection matrix is used for evaluating the optimized test cases.

Alrawashed et al. [7] proposed an automated test data generator with reduced complexity

and increased test coverage that takes the use cases as input and converts them to CFG. Then the

proposed tool for generating test paths (PTGTP) generates the test cases from it. An ATM

withdrawal is taken as input, and a genetic algorithm is used for optimizing and measuring the

efficiency of the work.

Test data are created from the Activity diagram and Statechart diagram using a genetic

algorithm in [8,9]. Combined both the diagram graph and the activity state chart diagram graph

(ASCDG) and employed the ATM scenario to validate the effectiveness of the algorithm.

A modified DFS algorithm is implemented for creating the test suite [10]. A combination of

various UML diagrams says sequence, collaboration diagram, and system test graph (SYTG), is

inputted. The DFS algorithm is then applied to produce the test data from each graph.

Experimental results show that the UML diagrams give more accurate results for the given scenario.

http://TuEngr.com Page | 3

Gangopadhyay et al. [11] proposed a test case generation method using Bayesian

optimization. System Theoretic Process Analysis is used for initializing the parameters, and

Bayesian Optimization is applied to expose the SUT to various external behaviours. Bayesian

Optimization [12] is a machine learning-based approach for optimizing the objective function. This

helps in determining the global minima, which leads to the failure of the system.

Verma et al. [13] implemented a new framework that generates test cases for object-oriented

applications, via pattern matching techniques for parsing the UML diagrams and generating test

cases from them. Class diagrams were used for retrieving static information, and for dynamic

information, sequence and state chart diagrams [14] were used. Object interactions, pre and post

conditions, initial and final states of the system, transition details, etc. are extracted from the UML

models for test case generation.

A bio-inspired optimization technique is implemented in creating test inputs from the user

requirements [15,16]. A POS tagger helps in determining the matching nouns and verbs from the

test domain. A bacterial foraging algorithm and a PSO algorithm are hybridized in [17] for the

betterment of optimization, and genetic algorithms are employed for optimizing the generated test

cases in [18,19]. The movement of BFA is guided by particle swarm optimization.

Singla et al. [20] applied a hybrid genetic-particle swarm combined algorithm for automating

the test case generation for data flow coverage. To improve the efficiency, a closeness level value is

added to the fitness function of the test data so that any missed nodes from the critical path can be

identified.

 Background 3
This section reviews Genetic and Crow search algorithms/techniques used for test case

optimization.

3.1 Genetic Algorithm
A genetic algorithm inspired by the biological evolution process is used for solving the

optimization problem. The basic idea behind genetic optimization is that it starts with an initial

population that evolves to be the best-optimized individual. A fitness function is used to measure

the effectiveness of the solution. Key genetic operators include selection, crossover, and mutation.

Selection involves choosing a random individual to be a parent. A crossover is combining two

parents or chromosomes to form a child for the next generation. The mutation is making random

changes in the parent, say changing a single bit to generate a new child for the next generation.

3.1.1 Genetic Optimization Procedure
1. Generating random initial test populations
2. From the test population, the test data for the next generation is created using the following

steps:

-Fitness value computation for each test input
-Parents' selection

-Crossover to create a new child and mutation to add new features

http://TuEngr.com Page | 4

3. Survivors' selection, i.e., specifically, the best-fit test case.

The fitness function helps to determine the best-fit test cases for the given problem. Here,

the single-point crossover is used for generating new test cases. A bit flip mutation is employed,

where one or more random bits are picked and mutated. In survivor selection, elitism, i.e., fitness-

based selection, is used, where the best-fitting test case will be chosen for the next iteration.

3.2 Crow Search Optimization Algorithm
The Crow search algorithm [21] is also a bio-inspired approach that mimics the intelligent

behavior of crows in memorizing the places where they hide their food and can take the food even

after months.

3.2.1 Crow Search Optimization Procedure
1. Assume that the population has N possible alternatives or solutions.
2. Let S be the population size.
3. Each crow’s position is initialized using the vector,

Xci = �Xc1i Xc2i Xc3i … … Xcdi � (1)

Where d represents the search space dimensions and i is the iteration index.
4. The whole population

X =

⎣
⎢
⎢
⎢
⎡
X11i X12i … X1di
X21i X22I … X2di

. . … .

. . … .
Xs1i Xs2i … Xsdi⎦

⎥
⎥
⎥
⎤

 (2)

5. Memory can be initialized as,

M =

⎣
⎢
⎢
⎢
⎡
m11i m12i . . . m1di
m21i m22i . . . m2di

.

.
ms1i ms2i . . . msdi⎦

⎥
⎥
⎥
⎤
 (3)

6. Determine the awareness probability.
7. The best alternative is determined by evaluating the fitness value at each iteration.
8. The position of the crows is updated accordingly to determine the place of the hidden food.
9. The feasibility of the generated position is validated and the fitness value is computed for

the newly updated position.
10. If the fitness value is better than the current memory value then update the memory value.
11. Repeat the steps from 6 to 10 until the termination criteria are met.

 Proposed Approach 4
This section covers the proposed framework for converting use case descriptions to flow

graphs and generating test cases followed by optimization. In this research, we attempted to

http://TuEngr.com Page | 5

produce test cases from the activity diagram. Figure.1 depicts the process flow of the proposed

framework.

Figure 1: Test case Generation Framework.

4.1 Conversion of Activity Diagram to Flowgraph
An activity diagram models the control flow of the system from source to sink, depicting the

decision paths that will be covered while the activity is executed.

Path coverage is measured using the flow graph, which helps in finding the exact test case

for the critical path. To demonstrate the efficiency of the proposed approach, we considered an

online bank transaction scenario. Figure 2 shows the activity diagram of the fund transfer module

in the Net banking system, and the corresponding flow graph is shown in Figure 3.

Figure2: Activity Diagram for Fund Transfer in Net banking Application.

A flow graph helps in finding the test cases for the system under consideration. A control

flow graph is a directed graph where nodes are the blocks of code and edges represent the transfer

No

No

Yes

Yes

Update Account Balance

Print report
Display Error Message

Select fund transfer

Choose payee

Enter transfer

Validate amount

Login

Enter user credentials

Validate user credentials

No Yes

Check Account

Check Transaction Limit
No

Yes

http://TuEngr.com Page | 6

of control from one block to another. The number of possible independent paths of execution for a

program can be determined from the Control Flow Graph (CFG). The cyclomatic complexity of the

flow graph is calculated in one of the ways,

1. Number of regions present in the CFG

2. Edges - Nodes +2

3. Number of Predicate nodes + 1

The cyclomatic complexity for the fund transfer module is computed as V(G)= P + 1

V(G)= 4+1 = 5

The possible independent paths are:

Invalid User Credentials: 1-2-3-12-13

Invalid transfer Amount: 1-2-3-4-5-6-7-12-13

Insufficient Balance: 1-2-3-4-5-6-7-8-12-13

Insufficient transaction limit: 1-2-3-4-5-6-7-8-9-12-13

Successful fund transfer: 1-2-3-4-5-6-7-8-9-10-11-13

Figure 3: Control Flow Graph for Fund Transfer module

4.2 Genetic -Based Crow Search Algorithm (GBCSA) for Test Case
Generation

A major issue with the Crow search algorithm is getting trapped with a locally optimal

solution which can be overcome by hybridizing with a genetic algorithm so that NP-hard

optimization problems can also be addressed effectively. The genetic key operators, Crossover, and

http://TuEngr.com Page | 7

mutation are applied for generating the new positions which are then evaluated using the fitness

function to determine whether it’s a globally optimal solution. The new position of the crow at

each iteration is calculated using

X = Xprevitr + RN ∗ FlightLength ∗ (Mq − Mp) (4),

where Xprevitr denotes the position of the crow in the previous iteration.

RN is the random number {0,1},

Mp and Mq are the memorized position of crow p and crow q.

Flight Length plays an important role in improving the searchability of the algorithm. If a

too large value is chosen, the algorithm tends to search globally leading to poor convergence. If FL

is too small there is a chance of being entrapped into local optima. Similarly, small values of

Awareness probability increase the local search whereas larger values lead to global search.

4.2.1 GBCSA Pseudocode
1. Initialize the Population size, Awareness probability A, maximum iteration limit
2. Generate the initial Population
3. Evaluate the fitness of each individual
4. Initialize the memory M for each individual
5. Choose one random solution
6. Set the awareness probability
7. Generate a random value RN € { 0,1}
8. do
9. If (RN ≥ A)
10. Generate a new random position
11. Else
12. Generate a new position using the Equation (1)
13. Apply Genetic Operators: Crossover on chromosomes pairwise and Mutation
14. Evaluate the new position using the fitness function
15. If (RN < A)

a. Update the memory position
16. While(i < Maximum iterations)
17. End

 Simulation and Results 5
This section shows the experimental results and evaluation metrics used. The effectiveness

of the GBCSA algorithm is examined for the fund transfer scenario. The main objective of the

proposed framework is to generate test cases with 100%path coverage. The objective function for

the fund transfer scenario was based on the branch and predicate distance. We considered the

following parameters for implementation,

1. Fitness function

F(x) = 1
((abs(netbal−transferamt)−min _bal)+0.5)2

 (5),

2. Dimension of search space, d= 3

http://TuEngr.com Page | 8

3. Population size S=1000
4. Maximum number of iterations: 100
5. The crow’s initial positions and path are generated from the CFG shown in Figure 3

Crow =

⎣
⎢
⎢
⎢
⎡
3 2 5
5 4 2
7 3 4
2 5 6
6 7 4⎦

⎥
⎥
⎥
⎤

6. Memory M is set to crow’s initial position
7. Awareness probability: AP=0.5
8. Flight Length: FL=0.6
9. Random Number: RN € { 0,1}.

The memory of each crow is initialized as

𝐶𝐶1 = 𝑀𝑀1 = [3 2 5]

𝐶𝐶2 = 𝑀𝑀2 = [5 4 2]

𝐶𝐶3 = 𝑀𝑀3 = [7 3 4]

𝐶𝐶4 = 𝑀𝑀4 = [2 5 6]

𝐶𝐶5 = 𝑀𝑀5 = [6 7 4]

After each iteration, the new position of the crow is calculated using Equation (1) based on

the awareness probability.

Crow’s new position for the next iteration is

New Position =

⎣
⎢
⎢
⎢
⎡
5 4 6
7 5 4
8 5 6
4 7 8
7 9 6⎦

⎥
⎥
⎥
⎤
 (5).

The procedure is repeated for n iterations, finding a new position, followed by crossover and

mutation. Finally, the solution is evaluated using the fitness function F(x).

Table 1: Comparison of test cases generated by CBCSA, CSA, and Genetic Algorithm
GBCSA CSA GA

Iteration No Test cases Fitness value Test cases Fitness value Test cases Fitness value
1 458 5.2431e-007 387 7.151e-008 464 7.6423e-008

10 512 5.1042e-007 596 1.5648e-007 501 4.5320e-008
20 831 3.4611e-005 663 2.9865e-007 511 3.3441e-007
30 891 3.4611e-005 783 1.5968e-007 645 2.7842e-007
40 891 3.4611e-005 801 2.2140e-006 815 2.0014e-007
50 891 3.4611e-005 801 2.2140e-006 818 2.4751e-007
60 891 3.4611e-005 801 2.0110e-006 823 3.568e-007
70 891 3.4611e-005 801 2.0110e-006 823 3.568e-007
80 891 3.4611e-005 801 2.0110e-006 823 3.568e-007
90 891 3.4611e-005 801 2.0110e-006 823 3.568e-007
100 891 3.4611e-005 801 2.0110e-006 823 3.568e-007

http://TuEngr.com Page | 9

Table 1 shows the number of test cases generated for each crow and the corresponding

fitness value of all test cases. The proposed GBCSA algorithm produced an optimal solution with

fewer numbers of iterations when compared with the traditional Crow search and genetic

algorithm.

According to the results in Table 1, the hybridized genetic-based crow search algorithm

produces optimized test cases for all paths including the critical path with 100% path coverage in

11 iterations with an average execution time of 0.312s.

Table.2. depicts the Percentage of test cases generated with respect to the fitness value. It

shows that maximum test cases have a high fitness value in the range of 0.7 to 1.0. Table.3 and

Figure.4 depict the number of test cases generated for each path in 100 iterations.

Table 2:Percentage of Test cases Vs Fitness Range
Fitness value

range
Percentage of test cases

GBCSA CSA GA
0≤F(x)≤0.4 19 20 22

0.4≤F(x)≤0.7 12 26 29
0.7≤F(x)≤1.0 45 38 38

Table 3:Test data for each path

Independent Path Description Number of Test Data
GBCSA CSA GA

Path 1 Invalid User Credentials 121 101 108
Path 2 Invalid transfer Amount 215 198 188
Path 3 Insufficient Balance 216 205 198
Path 4 Insufficient transaction limit 108 185 175
Path 5 Successful fund transfer 231 112 154

Figure 4: Comparison of Test data generated by GBCSA,CSA and GA

 Conclusion 6
This research aims at achieving 100% path coverage with less execution time. The proposed

Genetic based Crow search algorithm generates an optimized global set of test cases. The

awareness probability and the fitness function guides the search leading the framework to generate

the best test data also covering all possible path. The experimental results proved that the hybrid

0

50

100

150

200

250

Path 1 Path 2 Path 3 Path 4 Path 5

GBCSA

CSA

GA

http://TuEngr.com Page | 10

GBCSA generates test cases for the critical path as well with a minimum number of iterations and

execution time when compared with the traditional Crow search algorithm and Genetic algorithm.

Further, we have planned to improve the test case optimization for larger complex systems.

Also, consider multipath objective function in the future which combines both branch and

predicate distance which can improve the search direction.

 Availability of Data and Material 7
Data can be made available by contacting the corresponding author.

 References 8
[1] Basa, S.S, Swain, S.K and Mohapatra, D.P. (2018). Genetic algorithm based optimized test case design using

UML. Journal of Computer and Mathematical Sciences, 9(9), 1223-1238.

[2] Marikina, K, Apostolopoulos, C. and Tsaramirsis, G. (2017) Extending model driven engineering aspects to
Business Engineering domain: A model driven Business Engineering Aroach. International Journal of
Information Technology, 9(1),49-57.

[3] Prasanna, M and Chandran, K.R (2009). Automatic test case generation for UML object diagrams using
Genetic algorithm. International Journal of Advances in soft computing and its Alications, 1(1), 19-32.

[4] Pahwa, N., & Solanki, K. (2014). UML based test case generation methods: A review. International Journal of
Computer Applications, 95(20).

[5] Sharma M, Pathik B,(2021) Crow search Algorithm with Improved Objective Function for Test case
Generation and Optimization. Intelligent Automation & Soft Computing, 32(2),1125-1140.

[6] Asthana, M., Gupta, K. D., & Kumar, A. (2020). Test suite optimization using Lion Search algorithm. In
Ambient Communications and Computer Systems (pp. 77-90). Springer, Singapore.

[7] Alrawashed T.A, Almomani A, Althunibat A, Tamimi A, (2019) An Automated Aroach to generate Test
Cases from Use case Description Model. CMES-Computer Modeling in Engineering & Sciences, 119(3),409-
425.

[8] Suresh, Y., and Rath, S, (2013) A genetic algorithm-based aroach for test data generation in basis path testing.
International Journal of Soft Computing and Software Engineering,3(3),326-332.

[9] Sahoo, R. K., Derbali, M., Jerbi, H., Van Thang, D., Kumar, P. P., & Sahoo, S. (2021). Test Case Generation
from UML-Diagrams Using Genetic Algorithm. CMC-COMPUTERS MATERIALS & CONTINUA, 67(2),
2321-2336.

[10] Septian, I., Alianto, R. S., & Gaol, F. L. (2017). Automated test case generation from UML activity
diagram and sequence diagram using depth first search algorithm. Procedia computer science, 116, 629-637.

[11] Gangopadhyay, B., Khastgir, S., Dey, S., Dasgupta, P., Montana, G., & Jennings, P. (2019, October).
Identification of test cases for automated driving systems using bayesian optimization. In 2019 IEEE Intelligent
Transportation Systems Conference (ITSC) (pp. 1961-1967). IEEE..

[12] Ghosh, S., Berkenkamp, F., Ranade, G, Qadeer, S. and Kapoor, S. (2018), Verifying Controllers Against
Adversarial Examples with Bayesian Optimization. IEEE International Conference on Robotics and
Automation (ICRA), .7306-7313. DOI: 10.1109/ICRA.2018.8460635

[13] Verma, A., & Dutta, M. (2014). Automated Test case generation using UML diagrams based on behavior.
International Journal of Innovations in Engineering and Technology (IJIET), 4(1), 31-39..

[14] Shanthi, A.V.K and Mohan Kumar,G (2012) Automated Test cases Generation form UML Sequence
Diagram, International Conference on Software and Computer Alications, 41(1), IACSIT Press, Singapore.

[15] Tamizharasi, A. (2021). Bio Inspired Approach for Generating Test data from User Stories. Turkish
Journal of Computer and Mathematics Education (TURCOMAT), 12(2), 412-419.Tamizharasi,A, Jasmine

http://TuEngr.com Page | 11

selvathai, Kavipriya, A, Maarlin, Harinetha,M (2017) Energy Aware Heuristic Aroach for Cluster Head
Selection in Wireless Sensor Networks .Bulletin of Electrical Engineering and Informatics, 6(1),70-75.

[16] Sahoo, R. R., & Ray, M. (2020). PSO based test case generation for critical path using improved combined
fitness function. Journal of King Saud University-Computer and Information Sciences, 32(4), 479-490. DOI:
10.1016/j.jksuci.2019.09.010

[17] Swathi, B., & Tiwari, H. (2020). Genetic Algorithm Approach to Optimize Test Cases. International
Journal of Engineering Trends & Technology, 68(10), 112-116.

[18] Tamizharasi, A., Arthi, R. and Murugan, K. (2013) Bio-inspired algorithm for optimizing the localization
of wireless sensor networks, Proceedings of IEEE International Conference in Computing, Communications
and Networking Technologies (ICCCNT), 1-5.

[19] Singla, S., Kumar, D., Rai, H. M., & Singla, P. (2011). A Hybrid PSO Aroach to Automate Test Data
Generation for Data Flow Coverage with dominance Concepts. International Journal of Advanced Science and
Technology, 37, 15-26.

[20] Hussien, A. G., Amin, M., Wang, M., Liang, G., Alsanad, A., Gumaei, A., & Chen, H. (2016). ’Crow
Search Algorithm: Theory. Recent Advances, and Applications’ IEEE Transactions and Journals, 4.

[21] Laabadi, S., Naimi, M., Amri, H. E., & Achchab, B. (2019). A crow search-based genetic algorithm for
solving two-dimensional bin packing problem. In Joint german/austrian conference on artificial intelligence
(künstliche intelligenz) (pp. 203-215). Springer, Cham.

Tamizharasi A is a Research Scholar at the Department of Computer Science and Engineering, R.M.D. Engineering
College, Chennai, India. She received a Bachelor’s degree in Computer Science and Engineering from Pavendhar
Bharathidasan College of Engineering and Technology and an M.E in Systems Engineering and Operation Research from
College of Engineering, Anna University, Chennai. Her areas of interest are Software Testing, Machine Learning, Data
Science and Wireless Sensor Networks.

Dr. P. Ezhumalai is a Professor & Head at the Department of Computer Science and Engineering, R.M.D. Engineering
College, Chennai. He got his Master’s from Jawaharlal Nehru Technological University, Hyderabad and his PhD degree
from Anna University, Chennai. His research focuses on Cloud computing, Multicore Architecture and Machine Learning.

	Genetic-based Crow Search Algorithm for Test Case Generation
	1 Introduction
	2 Literature Review
	3 Background
	3.1 Genetic Algorithm
	3.1.1 Genetic Optimization Procedure

	3.2 Crow Search Optimization Algorithm
	3.2.1 Crow Search Optimization Procedure

	4 Proposed Approach
	4.1 Conversion of Activity Diagram to Flowgraph
	4.2 Genetic-Based Crow Search Algorithm (GBCSA) for Test Case Generation
	4.2.1 GBCSA Pseudocode

	5 Simulation and Results
	6 Conclusion
	7 Availability of Data and Material
	8 References

