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Abstract 
Generating test data for a complex domain is still a challenging area of 
research in software testing, which builds the test suites for validating 

the system. The quality of test cases generated decides the cost and 
effectiveness of the software process, which drives this research to optimize 
the test suites. Unified Model Language (UML) models depict the system 
responses to a given scenario, so generating the test case from the models 
would give maximum path coverage from start to finish. The proposed work 
attempts to create optimized test data from the UML model at the early 
stages of software development. The Hybrid Genetic and Crow Search 
Algorithm (GBCSA) helps to optimize the test suite by removing the 
redundant test data. This helps in maintaining a pool of solutions and directs 
the search towards global optima, decreasing the likelihood of getting 
trapped in the local optima. The experimental results show 100% path 
coverage and time efficiency when compared with traditional crow search 
and genetic optimization algorithms. 
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 Introduction 1
Testing plays a crucial part in assuring the quality of the released software product. Testing 

time increases with respect to the project size and complexity. Testing includes test case design, 

preparation, and implementation of test cases to validate the system, and, finally, comparison of 

results. Generating optimized test data that covers the entire critical path is a big challenge in the 

testing domain. Test cases help in determining whether the user requirements are met or not. Test 

cases can be produced from both the user stories and the code as well. Testing the software after 

the coding phase may give accurate results, but still delays the completion time. This work 
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attempts to overcome the delay in project completion due to testing the project at a later stage. The 

proposed approach generates the test cases at the earlier stages of development from the use cases. 

This minimizes the errors and also simplifies the process of fixing them, which in turn reduces the 

budget for software development. 

Various test case generation methods include random approaches, goal-oriented, model-

based, etc. Generating test cases from Unified Model Language (UML) diagrams such as use case 

diagrams, sequence diagrams, class diagrams, and Petri net diagrams is generally termed "model-

based testing." Model-driven software development employs design notations for software testing 

[1,4]. A model describes the functionalities of the system under test (SUT). UML captures the 

requirements from all different stakeholders’ perspectives. Usually, the test suite generated from 

UML models is semi-formal [2, 3]. Model-based testing attempts to generate test cases that cover 

all different possible paths of the system elements. This research work focuses mainly on 

generating test suites that cover the maximum software system details with optimized test 

scenarios to test the SUT. In the proposed approach, test suite generation starts with executing the 

initial test cases, followed by using heuristic algorithms for generating additional test cases and 

optimization. 

 Literature Review 2
Pathik et al. [5] used a bio-inspired crow search algorithm that combined branch and 

predicate distance to cover all possible paths, using a control flow graph (CFG) for creating the test 

cases. The minimum independent path is computed using the cyclomatic complexity of the CFG. 

Also, a combined fitness function is used for validating the effectiveness of the algorithm in 

locating the best optimal solution. Asthana et al. [6] prioritized the test cases for regression testing. 

The population-based meta-heuristic algorithm, called the Lion optimization algorithm, prioritized 

the regression test suite based on the previous history of execution data of regression cycles. A 

fault detection matrix is used for evaluating the optimized test cases. 

Alrawashed et al. [7] proposed an automated test data generator with reduced complexity 

and increased test coverage that takes the use cases as input and converts them to CFG. Then the 

proposed tool for generating test paths (PTGTP) generates the test cases from it. An ATM 

withdrawal is taken as input, and a genetic algorithm is used for optimizing and measuring the 

efficiency of the work. 

Test data are created from the Activity diagram and Statechart diagram using a genetic 

algorithm in [8,9]. Combined both the diagram graph and the activity state chart diagram graph 

(ASCDG) and employed the ATM scenario to validate the effectiveness of the algorithm. 

A modified DFS algorithm is implemented for creating the test suite [10]. A combination of 

various UML diagrams says sequence, collaboration diagram, and system test graph (SYTG), is 

inputted. The DFS algorithm is then applied to produce the test data from each graph. 

Experimental results show that the UML diagrams give more accurate results for the given scenario. 
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Gangopadhyay et al. [11] proposed a test case generation method using Bayesian 

optimization. System Theoretic Process Analysis is used for initializing the parameters, and 

Bayesian Optimization is applied to expose the SUT to various external behaviours. Bayesian 

Optimization [12] is a machine learning-based approach for optimizing the objective function. This 

helps in determining the global minima, which leads to the failure of the system. 

Verma et al. [13] implemented a new framework that generates test cases for object-oriented 

applications, via pattern matching techniques for parsing the UML diagrams and generating test 

cases from them. Class diagrams were used for retrieving static information, and for dynamic 

information, sequence and state chart diagrams [14] were used. Object interactions, pre and post 

conditions, initial and final states of the system, transition details, etc. are extracted from the UML 

models for test case generation. 

A bio-inspired optimization technique is implemented in creating test inputs from the user 

requirements [15,16]. A POS tagger helps in determining the matching nouns and verbs from the 

test domain. A bacterial foraging algorithm and a PSO algorithm are hybridized in [17] for the 

betterment of optimization, and genetic algorithms are employed for optimizing the generated test 

cases in [18,19]. The movement of BFA is guided by particle swarm optimization. 

Singla et al. [20] applied a hybrid genetic-particle swarm combined algorithm for automating 

the test case generation for data flow coverage. To improve the efficiency, a closeness level value is 

added to the fitness function of the test data so that any missed nodes from the critical path can be 

identified. 

 Background 3
This section reviews Genetic and Crow search algorithms/techniques used for test case 

optimization. 

3.1 Genetic Algorithm 
A genetic algorithm inspired by the biological evolution process is used for solving the 

optimization problem. The basic idea behind genetic optimization is that it starts with an initial 

population that evolves to be the best-optimized individual. A fitness function is used to measure 

the effectiveness of the solution. Key genetic operators include selection, crossover, and mutation. 

Selection involves choosing a random individual to be a parent. A crossover is combining two 

parents or chromosomes to form a child for the next generation. The mutation is making random 

changes in the parent, say changing a single bit to generate a new child for the next generation. 

3.1.1 Genetic Optimization Procedure 
1. Generating random initial test populations 
2. From the test population, the test data for the next generation is created using the following 

steps: 

-Fitness value computation for each test input 
-Parents' selection 

-Crossover to create a new child and mutation to add new features 
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3. Survivors' selection, i.e., specifically, the best-fit test case. 

The fitness function helps to determine the best-fit test cases for the given problem. Here, 

the single-point crossover is used for generating new test cases. A bit flip mutation is employed, 

where one or more random bits are picked and mutated. In survivor selection, elitism, i.e., fitness-

based selection, is used, where the best-fitting test case will be chosen for the next iteration. 

3.2 Crow Search Optimization Algorithm 
The Crow search algorithm [21] is also a bio-inspired approach that mimics the intelligent 

behavior of crows in memorizing the places where they hide their food and can take the food even 

after months.  

3.2.1 Crow Search Optimization Procedure 
1. Assume that the population has N possible alternatives or solutions.  
2. Let S be the population size. 
3. Each crow’s position is initialized using the vector, 

Xci = �Xc1i Xc2i Xc3i … … Xcdi � (1) 

Where d represents the search space dimensions and i is the iteration index. 
4. The whole population 

X =  

⎣
⎢
⎢
⎢
⎡
X11i X12i … X1di
X21i X22I … X2di

. . … .

. . … .
Xs1i Xs2i … Xsdi⎦

⎥
⎥
⎥
⎤

 (2) 

5. Memory can be initialized as, 

M =

⎣
⎢
⎢
⎢
⎡
m11i m12i . . . m1di
m21i m22i . . . m2di

. . . . . .

. . . . . .
ms1i ms2i . . . msdi⎦

⎥
⎥
⎥
⎤
 (3) 

6. Determine the awareness probability. 
7. The best alternative is determined by evaluating the fitness value at each iteration. 
8. The position of the crows is updated accordingly to determine the place of the hidden food. 
9. The feasibility of the generated position is validated and the fitness value is computed for 

the newly updated position. 
10. If the fitness value is better than the current memory value then update the memory value. 
11. Repeat the steps from 6 to 10 until the termination criteria are met. 

 Proposed Approach 4
This section covers the proposed framework for converting use case descriptions to flow 

graphs and generating test cases followed by optimization.  In this research, we attempted to 
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produce test cases from the activity diagram. Figure.1 depicts the process flow of the proposed 

framework. 

 
Figure 1: Test case Generation Framework. 

 

4.1 Conversion of Activity Diagram to Flowgraph 
An activity diagram models the control flow of the system from source to sink, depicting the 

decision paths that will be covered while the activity is executed. 

Path coverage is measured using the flow graph, which helps in finding the exact test case 

for the critical path. To demonstrate the efficiency of the proposed approach, we considered an 

online bank transaction scenario. Figure 2 shows the activity diagram of the fund transfer module 

in the Net banking system, and the corresponding flow graph is shown in Figure 3. 
 

 
Figure2: Activity Diagram for Fund Transfer in Net banking Application. 

 
A flow graph helps in finding the test cases for the system under consideration.  A control 

flow graph is a directed graph where nodes are the blocks of code and edges represent the transfer 
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of control from one block to another. The number of possible independent paths of execution for a 

program can be determined from the Control Flow Graph (CFG). The cyclomatic complexity of the 

flow graph is calculated in one of the ways, 

1. Number of regions present in the CFG 

2. Edges  - Nodes +2 

3. Number of Predicate nodes + 1 

The cyclomatic complexity for the fund transfer module is computed as V(G)= P + 1 

V(G)= 4+1 = 5 

The possible independent paths are: 

Invalid User Credentials:      1-2-3-12-13   

Invalid transfer Amount:      1-2-3-4-5-6-7-12-13 

Insufficient Balance:               1-2-3-4-5-6-7-8-12-13 

Insufficient transaction limit:  1-2-3-4-5-6-7-8-9-12-13 

Successful fund transfer:         1-2-3-4-5-6-7-8-9-10-11-13 
 

 
Figure 3: Control Flow Graph for Fund Transfer module 

 

4.2 Genetic -Based Crow Search Algorithm (GBCSA) for Test Case 
Generation 

A major issue with the Crow search algorithm is getting trapped with a locally optimal 

solution which can be overcome by hybridizing with a genetic algorithm so that NP-hard 

optimization problems can also be addressed effectively. The genetic key operators, Crossover, and 
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mutation are applied for generating the new positions which are then evaluated using the fitness 

function to determine whether it’s a globally optimal solution. The new position of the crow at 

each iteration is calculated using 

X = Xprevitr + RN ∗ FlightLength ∗ ( Mq − Mp) (4), 

where Xprevitr denotes the position of the crow in the previous iteration.  

RN is the random number {0,1}, 

Mp and Mq are the memorized position of crow p and crow q. 
 

Flight Length plays an important role in improving the searchability of the algorithm. If a 

too large value is chosen, the algorithm tends to search globally leading to poor convergence. If FL 

is too small there is a chance of being entrapped into local optima. Similarly, small values of 

Awareness probability increase the local search whereas larger values lead to global search. 

4.2.1 GBCSA Pseudocode 
1. Initialize the Population size, Awareness probability A, maximum iteration limit 
2. Generate the initial Population 
3. Evaluate the fitness of each  individual 
4. Initialize the memory M for each individual  
5. Choose one random solution 
6. Set the awareness probability 
7. Generate a random value RN € { 0,1} 
8. do 
9. If (RN ≥ A) 
10. Generate a new  random  position  
11. Else 
12. Generate a new position using the Equation ( 1)  
13. Apply Genetic Operators: Crossover on chromosomes pairwise and Mutation 
14. Evaluate the new position using the fitness function 
15. If (RN < A) 

a. Update the memory position 
16. While( i < Maximum iterations) 
17. End 

 Simulation and Results 5
This section shows the experimental results and evaluation metrics used. The effectiveness 

of the GBCSA algorithm is examined for the fund transfer scenario. The main objective of the 

proposed framework is to generate test cases with 100%path coverage. The objective function for 

the fund transfer scenario was based on the branch and predicate distance. We considered the 

following parameters for implementation, 

1. Fitness function 

F(x) = 1
((abs(netbal−transferamt)−min _bal)+0.5)2

 (5), 

2. Dimension of search space,  d= 3 
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3. Population size S=1000 
4. Maximum number of iterations: 100 
5. The  crow’s initial positions and path are generated from the CFG shown in Figure 3 

Crow =

⎣
⎢
⎢
⎢
⎡
3 2 5
5 4 2
7 3 4
2 5 6
6 7 4⎦

⎥
⎥
⎥
⎤
  

6. Memory M  is set to crow’s initial position 
7. Awareness probability: AP=0.5 
8. Flight Length: FL=0.6 
9. Random Number: RN € { 0,1}. 

 

The memory of each crow is initialized as 

𝐶𝐶1 = 𝑀𝑀1 = [3 2 5]  

𝐶𝐶2 = 𝑀𝑀2 = [5 4 2]  

𝐶𝐶3 = 𝑀𝑀3 = [7 3 4]  

𝐶𝐶4 = 𝑀𝑀4 = [2 5 6]  

𝐶𝐶5 = 𝑀𝑀5 = [6 7 4]  

After each iteration, the new position of the crow is calculated using Equation (1) based on 

the awareness probability. 

Crow’s new position for the next iteration is 

New Position =

⎣
⎢
⎢
⎢
⎡
5 4 6
7 5 4
8 5 6
4 7 8
7 9 6⎦

⎥
⎥
⎥
⎤
 (5). 

The procedure is repeated for n iterations, finding a new position, followed by crossover and 

mutation. Finally, the solution is evaluated using the fitness function F(x). 
 

Table 1: Comparison of test cases generated by CBCSA, CSA, and Genetic Algorithm 
GBCSA CSA GA 

Iteration No Test cases Fitness value Test cases Fitness value Test cases Fitness value 
1 458 5.2431e-007 387 7.151e-008 464 7.6423e-008 

10 512 5.1042e-007 596 1.5648e-007 501 4.5320e-008 
20 831 3.4611e-005 663 2.9865e-007 511 3.3441e-007 
30 891 3.4611e-005 783 1.5968e-007 645 2.7842e-007 
40 891 3.4611e-005 801 2.2140e-006 815 2.0014e-007 
50 891 3.4611e-005 801 2.2140e-006 818 2.4751e-007 
60 891 3.4611e-005 801 2.0110e-006 823 3.568e-007 
70 891 3.4611e-005 801 2.0110e-006 823 3.568e-007 
80 891 3.4611e-005 801 2.0110e-006 823 3.568e-007 
90 891 3.4611e-005 801 2.0110e-006 823 3.568e-007 
100 891 3.4611e-005 801 2.0110e-006 823 3.568e-007 
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Table 1 shows the number of test cases generated for each crow and the corresponding 

fitness value of all test cases. The proposed GBCSA algorithm produced an optimal solution with 

fewer numbers of iterations when compared with the traditional Crow search and genetic 

algorithm. 

According to the results in Table 1, the hybridized genetic-based crow search algorithm 

produces optimized test cases for all paths including the critical path with 100% path coverage in 

11 iterations with an average execution time of 0.312s. 

Table.2. depicts the Percentage of test cases generated with respect to the fitness value. It 

shows that maximum test cases have a high fitness value in the range of 0.7 to 1.0. Table.3 and 

Figure.4 depict the number of test cases generated for each path in 100 iterations. 
 

Table 2:Percentage of Test cases Vs Fitness Range 
Fitness value 

range 
Percentage of test cases 

GBCSA CSA GA 
0≤F(x)≤0.4 19 20 22 

0.4≤F(x)≤0.7 12 26 29 
0.7≤F(x)≤1.0 45 38 38 

 
Table 3:Test data for each path 

Independent Path Description Number of Test Data 
GBCSA CSA GA 

Path 1 Invalid User Credentials 121 101 108 
Path 2 Invalid transfer Amount 215 198 188 
Path 3 Insufficient Balance 216 205 198 
Path 4 Insufficient transaction limit 108 185 175 
Path 5 Successful fund transfer 231 112 154 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Comparison of Test data generated by GBCSA,CSA and GA 
 

 Conclusion 6
This research aims at achieving 100% path coverage with less execution time. The proposed 

Genetic based Crow search algorithm generates an optimized global set of test cases. The 

awareness probability and the fitness function guides the search leading the framework to generate 

the best test data also covering all possible path. The experimental results proved that the hybrid 
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GBCSA generates test cases for the critical path as well with a minimum number of iterations and 

execution time when compared with the traditional Crow search algorithm and Genetic algorithm. 

Further, we have planned to improve the test case optimization for larger complex systems. 

Also, consider multipath objective function in the future which combines both branch and 

predicate distance which can improve the search direction. 

 Availability of Data and Material 7
Data can be made available by contacting the corresponding author. 
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