©2024 International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies

ISSN 2228-9860 eISSN 1906-9642 CODEN: ITJEAS8

International Transaction Journal of Engineering,
Management, & Applied Sciences & Technologies

http://TuEngr.com

: %'JE'; Recent Trends in Precision Agriculture:
%%-- x% Applications & Challenges in Precision Farming

Shahira Amira Shaari', Nurul Asyikin Mohamed Radzi!’, Sharifah Azwa Shaayal,
Kaiyisah Hanis Mohd Azmi?, Nayli Adriana Azhar', Siti Aisyah Shahruddin®

I Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, MALAYSIA.

2 Department of Electronic System Engineering, Malaysia-Japan International Institute of Technology (MJIIT),
Universiti Teknologi Malaysia, 54100 Kuala Lumpur, MALAYSIA.

3 FGV Integrated Farming Holdings Sdn. Bhd., Level 20, Wisma FGV, Jalan Raja Laut, 50350 Kuala Lumpur,
MALAYSIA.

“Corresponding Author (Email asyikin@ uniten.edu.my).

Paper ID: 15A3B Abstract

Volume 15 Issue 3 Agricultural products for food production are expected to increase by
Received 11 June 2023 70% in 2050 to cater for the rising population. However, conventional
Received in revised form 09 agriculture (CA) practices cause unpredictable production, resource
February 2024 overutilisation, and unregulated waste production, while affecting climate

Accepted 15 March 2024
Available online 25 April
2024

Keywords:

Precision farming;
Agricultural machinery;
I0T; GIS; Agricultural
engineering; PA trend;

change through greenhouse gas emissions. Precision agriculture (PA) is one
of the fastest-growing agriculture technologies. PA strives to improve
agricultural productivity, land-use efficiency, production costs,
environmental quality, and food supply sustainability. Despite expandin

research on new technology adoption, PA continues to suffer from a lack o

agreement on its conceptualisation. Thus, this study examined agricultural
developments from the conventional era to the current PA trends, with a

PA technology; focus on precision farming. This initiative would assist farm managers and
Automation; agriculture analysts in identifying PA implementations and current P
Conventional technology for adoption while providing decision-making support.
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1 Introduction
Concerns about food security have long plagued many developed and emerging economies

worldwide. The deterioration of crop yield essentially affects food security. Factors such as

population growth, decreasing arable land for crop production, water scarcity, climate conditions,
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and a declining or aging farmer population have worsened this issue [1]. Enormous demand for food
production must be served cost-effectively without wasting resources such as water and electricity.
The world’s population is projected to be 34% larger than the year 2020, which may hit 9.6 billion
people by 2050 [2]. The demand for agricultural products for food production is expected to
increase by 70% in the same year to cater to the rising population [3]. At the same time, the
agricultural sector must address severe challenges due to conventional farming practices that lead
to erratic production, overuse of resources, and unrestrained waste production [4]. Precision
agriculture (PA) is a recent advancement that addresses these challenges through farm
management approaches to optimise yield productivity.

In [5],[6], [16]-[18], PA has been proven to have significantly improved conventional
agriculture (CA) practice and consequently improved crop yield. However, a variety of stressors,
including rapid population growth, natural resource depletion, environmental pollution, crop
diseases and climate change, pose increasing threats to the global agricultural sector that need to
be addressed in PA. The Internet of Things (IoT) and advanced machinery are among the most
common technologies adopted for effective farming. A need also arises to integrate the current PA
practice with the use of cutting-edge technology, such as artificial intelligence (AI). Table 1
summarises the recent reviews in the field of PA based on their agricultural application areas.
Despite the abundance of literature on this subject, this research highlights the theoretical gaps in
other advanced engineering concepts that can be integrated with the current PA practice. A review
of PA technologies is presented and thus provides insights for other researchers to utilise the

information in the PA sector.

Table 1: Summary of recent PA reviews.

Author Year Area Research Focus Research Gaps
Chinetal. [9] 2023 Traceability =~ The automation of plant disease detection using Decision support system for plant
drones. Presented an identification of common disease detection.
diseases, pathogens, crop types, drone categories, Drone/unmanned aerial vehicle

stakeholders, machine learning (ML) tasks, data, (UAV) communication technologies.
techniques to support decision-making, agricultural
product types, and challenges of drone-based plant
disease identification in literature.

Shinetal. [10] 2022 Traceability Machine vision-based automation in detecting stress Real-time detection
and diseases on crops, leaves, fruits, and vegetables. Decision support system for machine
vision-based automation.
Cellular communication technologies

Corwin et al. 2019 Traceability ~ Monitoring tool to address soil spatial variability Machinery coordination.
[5] mapping. Also presented a characterisation of Decision support system for crop
spatial variability of soil salinity using sampling and monitoring and disease
georeferenced soil electrical conductivity (ECa). inspection.
Mavridou etal. 2019 Traceability ~ Machine vision applications in PA, support fruit Communication technologies
[11] grading, fruit counting, yield estimation, and plant Drone/UAV applications

health monitoring. Also, focus on machinery
coordination and agricultural harvesting robots.

Rivera et al. 2023  Information- Reviewed light detection and ranging (LiDAR) Cellular wireless communication
[12] driven crop technologies for crop cultivation. Categorized technologies such as 3G, 4G Long-
production LiDAR applications into crop-related metric term Evolution (LTE) and 5G.

estimation, tree and plant digitisation, vision
systems for object detection and navigation, and
planning and decision support.
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Author Year Area Research Focus Research Gaps

Verma et al. 2020  Information-  Multimedia data collection and decision-making Wireless sensor network (WSN).
[13] driven crop  ability approach in PA with 10T sensors along with  Cellular wireless communication
production wireless communication technologies. technologies such as 3G, 4G LTE and
5G.

Thakuretal. [7] 2019  Information- WSN technologies adopted for PA as well as Cellular wireless communication
driven crop  available sensors and communication technologies. technologies such as 3G, 4G LTE and
production 5G

Méndez- 2019  Site-specific Pest detection management control using site- Site-specific monitoring (nutrients
Véazquez et al. farming specific zoning techniques. and diseases).
[14] An unmanned aerial system (UAS) is used to Site-specific spraying (herbicides,
capture georeferenced data using high-resolution pesticides, fertiliser).
multispectral images. Site-specific irrigation.
Hyperspectral imaging.
Norhashim et 2023  Field robotics UAV for PA in Malaysia based on technical Combination of several advanced
al. [15] requirements (weight, wing span, wing loading, ~ machineries for robust and efficient
range, maximum altitude, speed, durability, and robotic systems.

engine type), as well as sensors and data processing  Cellular wireless communication
methods. Applications of UAVs are mostly for  technologies such as 3G, 4G LTE and

weed mapping, crop growth and health monitoring, 5G.
crop production estimation, and crop spraying.
Gonzalez-De- 2020  Field robotics Advanced machinery with the utilisation of Mobile robots such as UAVs and
Santos et al. [8] different types of sensors for specific purposes. UAS

Translation of automated factory concept into
automated farm utilizing advance machinery.

Saiful etal. [6] 2020  Field robotics Specific advanced machinery of robotics and Combination of several advanced
vehicles to execute specific agricultural operations machineries for robust and efficient
(planting, inspection, spraying, and harvesting) robotic systems.
according to its limitation capabilities UAV for monitoring, spraying,
seeding, etc.
Martin et al. 2020 Fleet Field operations in agriculture, focusing on the Cellular wireless communication
[16] management optimization of agricultural machinery’s movement technologies such as 3G, 4G LTE and
in sugarcane production. Approaches based on 5G
spatial division configuration, route planning, and Real-time vehicle, machinery
cost parameters (fuel and time consumption) were detection and coordination and
presented. operational information.

PA applications have proven successful in diverse agricultural sub-branches, including
precision horticulture (PH), precision farming (PF), precision livestock farming (PLF), and precision
viticulture (PV). These sub-branches are illustrated in Figure 1. PH is a production management
approach in which precise inputs and practices are implemented at precise locations within an
orchard or particular sites with the intention of ‘doing the right thing’, ‘at the right time’ and ‘in
the right way’ [17]. PH normally involves the cultivation, processing, and marketing of fruits,
vegetables, flowers, medicinal, aromatic, and ornamental plants [18]. PLF is described as the
implementation of process engineering principles and methods in livestock farming to
automatically monitor, model, and manage animal production. PLF also involves the conversion of
bio-responses into pertinent information that can be easily applied to various management aspects
focusing on both animals and the environment [19]. PLF tools are designed to be
a completely automated management system that provides reliable data and warnings based on
continuous animal monitoring [20]. Meanwhile, PV refers to the method of using site-specific
techniques in vineyard production to enhance grape quality and vyield while reducing
negative environmental impact [21]. PV focuses on maximising the oenological potential of

vineyards, particularly in regions where high-quality wine production standards are enforced [22].
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In this research, PF is the main focus in which this article reviewed the recent trends and
challenges in PF. PF is practiced in both small and large farms, implying a management strategy to
increase productivity and economic returns while minimising the environmental impact [23]. The
rapid development of recent technological advancements in information and communication
technology (ICT) and geographic science provides tremendous opportunities for the development
of optimised distributed information systems for PF. This strategy will ensure their ability to meet
the nation’s food security needs in the face of diminishing natural resources, particularly land and
water. Applications of PF can be further classified into five sectors, including traceability,
information-driven crop production, site-specific farming, field robotics, and fleet management
[24]. Thus, this research aimed to gather the existing knowledge on technologies used in the PF
sector, categorised based on the five sectors, and to review the existing PA technologies
implemented from early techniques to their current agricultural practices.

This paper is structured as follows. Sections 2 and 3 thoroughly describe the CA and PA from
the PF perspective, respectively. Section 4 discussed the state-of-the-art of PA technologies in PF.
Further recommendations and practical considerations are also provided. Finally, Section 5

presented the review conclusion. Table 2 lists the acronyms used in the paper.

Precision

Agriculture
.. .. Precision
Precision Precision Livestock Precision
Horticulture Farming . Viticulture
= Farming
- Site-specific Fleet
Traceabili :
Rl Farming Management
Information-
driven Crop Field Robotics

Production

Figure 1: Precision agriculture categorization [24].

Table 2: Definitions of acronyms and notations.

Acronym Definition Acronym Definition

Al Artificial intelligence PLF Precision livestock farming
CA Conventional agriculture POI Points of Interest

DL Deep learning PV Precision viticulture

GIS Geographic information system SSDC Site-specific disease control
GPS Global positioning systems SSNM Site-specific nutrient management
ICT Information and Communication Technologies SSWM Site-specific weed management
loT Internet of Things UAV Unmanned aerial vehicle
ML Machine learning VRA Variable rate application
PA Precision agriculture VRT Variable rate technology

PF Precision farming WSN Wireless sensor network
PH Precision horticulture
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2 Literature Review

2.1 CA Background
Studies on the origins of farming history can be traced back to the 1930s through

archaeological excavations and investigations. The study by Tauger [25] showed that early humans
in the Neolithic Revolution developed agriculture approximately 10,000 years ago in response to a
seasonal climate following the end of the last ice age. Agriculture has played an important role in
the advancement of human civilisation. Even though early farming techniques were influenced by
local climate conditions, most farmers continued to plant on the same field year after year until the
soil nutrients were depleted. Agricultural techniques such as irrigating, intercropping, and crop
rotation have improved farming productivity over time. It is a primitive form of agriculture that
heavily relies on local cultures, instruments, natural resources, organic fertiliser, and the farmers’
cultural practices [26]. North Africa, East Africa, and West Africa are amongst the poorest countries
in the world, with subsistence and small-scale traditional agriculture remaining the mainstays of
their economies [27]. However, farming has changed dramatically over the last few centuries, and
many countries have shifted towards CA practices [28].

CA is the most common form of agriculture, where farmers typically utilise synthetic
chemical inputs that include fertilisers, pesticides, herbicides, and other continuous inputs. CA
techniques were developed in the late 19th century but were not widespread until after the Second
World War [29]. However, half of the world’s population notably continues to practice CA [26]. In
countries that practice CA, synthetic chemical resource inputs are handled uniformly across fields,
ignoring the naturally occurring spatial variability of soil and crop conditions between and within

fields [5]. Consequently, CA is usually resource and energy-intensive.

2.2 CA Issues

CA adopts tedious manual crop inspections, whereby human experts constantly monitor
crops to detect diseases early and prevent them from spreading. However, farmers with hectares of
land experience difficulty reaching every nook and cranny of a crop for regular inspection [30].
Additionally, these manual assessments can be time-consuming and cost-intensive [31].

The presumption of soil nutrient classification in CA is that a sampling point indicates the
status of the specified region and that variances within it are distributed randomly [1]. However,
intensive laboratory testing for soil nutrients such as nitrogen, phosphorous, and potassium is
time-consuming [32]. The collection of a huge number of soil samples involves the laborious task of
gathering soil chemicals and requires expert laboratory operators, increasing cost and time. These
limitations led to undersampling, which renders it inaccurate for the estimation of soil fertility in
large crop areas.

Currently, 70% of the global water consumed is used for crop irrigation [31]. However, a
water management control system that allows continuous flooding of water to provide the best

growth environment for crops (e.g. rice), is seriously lacking [33]. In addition, risks of groundwater
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contamination and other environmental threats exist as a result of the excessive usage of
herbicides, fertilisers, and pesticides in agriculture.

Herbicides are substances used to keep the growth of unwanted plants at bay. Application of
herbicides in CA is the most common practice of weed control. However, farmers tend to spray the
same amount of herbicides over the entire crop, even in weed-free areas. Overuse of herbicides will
eventually result in the mutation of weeds into herbicide-resistant ones. These weeds will compete
with crops for available resources such as water and space, causing losses to crop yields and their
growth [31].

In addition, insufficient blanket spreading of fertiliser without discrimination and reference
to the plant’s condition, as well as available soil nutrient content, can damage crop growth. It will
ultimately result in inconsistent fertiliser distribution, either undersupplying needed nutrients to
the plants, which will negatively impact plant development or oversupplying it, which will increase
input costs and create negative environmental consequences [1].

Conventional crop spraying utilises manual air-pressure and battery-powered knapsack
sprayers, which may lead to major pesticide losses. This insufficient method of pesticide crop
spraying is not only time-consuming but can also lead to untimely spraying [31]. Besides that, the
dependency on manpower methods causes inefficient labor costs.

In a nutshell, CA adopts tedious manual crop inspection and soil nutrient sampling that
results in either under-sampling or over-sampling. Moreover, the blanket spraying method can
cause groundwater contamination. Legitimate concerns about the adverse environmental impact
and production output from the use of CA methods should therefore be addressed. As such, CA
practices are being actively transformed by adopting PA, a more precise and reliable approach to

collecting, storing, restoring, and analysing field data.

3 Precision Agriculture in Farming

3.1 PA Background

A wide range of stressors pose increasing challenges to the global agricultural sector,
including a rising population, resource depletion, pollution, crop diseases, and climate change. PA
is a viable approach for addressing these issues with the adoption of variable rate application (VRA)
into farming activities [34]. VRA is an aspect of PA that automates the application of materials such
as fertilisers, chemical sprays, and seeds to the land. The application of these materials is
determined through precise data collection from on-field sensors, maps, and GPS that identify and

monitor the characteristics of a specific area of land [35].

3.2 PA Application and Technologies

VRA in PA can be further classified into five agriculture applications, including traceability,
information-driven crop production, site-specific farming, field robotics, and fleet management.
The following subsections briefly explain these applications. Meanwhile, the summary of these

application technologies is tabulated in Table 3.
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In agriculture, traceability refers to all stages of data collection, classification, conservation,
and implementation related to relevant processes in the food supply chain. Its purpose is to provide
assurance to customers and other stakeholders on the origin, location, and background of the
product, as well as to be used in crisis management in the event of food quality and safety concerns
[36]. Accordingly, product tracking and traceability, especially for on-farm operations, have
emerged as one of the most crucial matters in PA research. The use of a Geographic Information
System (GIS) as a PA tool will provide facilities for improving traceability information by linking it
to agro-environmental situations, including soil quality, crop productivity, pest control, disease
control, and local properties [36].

An example of a GIS application can be found in [37], through the web application Web
Paddy GIS. This web-based application decision support system (DSS) is capable of storing,
managing, analysing, and visualising all information on a single platform. The architecture of Web
Paddy GIS was developed by using free and open-source software. Therefore, the platform may be
remotely accessed by users using their smart phones. The data stored on the database server
contains agricultural information, plot location information, and information on pests and
diseases.

Lamanna et al. [38] presented a study on nuclear magnetic resonance profiling based on GIS
data to evaluate the spatial variability of metabolic expression in durum wheat fields in Italy. The
presented solution is used to adapt agronomic practices for providing water and nutrients to areas

depending on the metabolic expression of durum wheat at three different vegetation stages.

The use of Global Positioning Systems (GPS) on agricultural machinery provides location
and time information for all treatments. Given that the use of GPS-enabled smartphones has
become increasingly common, farmers can maximise it in the field by taking images of suspected
pests or diseases and sending them to the internet cloud. With the GPS coordinates of the spot
where the picture was taken, the potential desirable treatment will then be computed in the cloud
system based on crop information such as type of crop, planting date, and expected harvest date.

These pieces of information are initially stored in the cloud [39].

Abu Bakar and Bujang [1] reviewed how the integration of GPS-enabled mapping devices
with sensors helps identify and analyse sampling sites by using these geo-statistical tools. Satellite
images or aerial photography may be used to perform GPS mapping functions. Apart from using
GPS-based devices for crop sampling, GPS data can also be applied to shipping documents so that
the product’s origin (region, farmer, field) can be tracked and the buyer can be assured of the

veracity of the origin claims [39].

http://TuEngr.com Page | 7



Crops have initially been managed in CA under the presumption of standard soil, nutrient,
moisture, weed, and insect conditions. The application of chemicals, irrigating, fertilizing, and
performing such treatments have all been over- or under-applied due to uniform and untargeted
application. However, advances in crop growth modeling, as well as in the use of software for
monitoring and collecting data from farms, have opened the way for a new field of insights to aid
PA decision-making [1]. The advent of GPS and Global Navigation Satellite Systems (GNSS) has
enabled the practice of PA, which employs information technology to bring data from multiple
sources to crop production decisions. The fundamental pieces of knowledge required to identify the
geographic position of phenomena are critical. This is because the geographical and temporal
variability of soil and crop variables between and within fields is the factual basis for PA. The
purpose of georeferenced data collection is to provide accurate information about the spatial and
temporal variability of crops to facilitate the best decision-making by PA to increase vyield
production [2].

Sensors and automation are vital applications in the agricultural sector. An example of its
usage is to track the health and performance of the farm [40]. The adoption of remote sensing in
agriculture has resulted in the systematic collection of data across vast geographical areas [2].
Remote-sensing applications in agriculture refer to non-contact measurements of electromagnetic
radiation that interact with soil or plant content. The application of remote sensing focuses on a
wide range of endeavors, including crop yield, crop nutrients, water tension, plant disease
infestations, and soil properties such as organic matter, moisture, clay content, pH value, and
salinity [41]. The platforms for making these measurements often use satellites, aircraft, tractors,
and hand-held sensors. However, cloud cover also severely limits the availability of remote-sensing
imagery from satellite and airborne platforms, whereas ground-based remote sensing is less
affected by this constraint. Additionally, higher spatial and spectral resolution remote sensing data
are often prohibitively expensive [41].

Ismail et al. [42] proposed an IoT-based paddy monitoring and advisory system called e-Padi,
as shown in Figure 2. By using microcontrollers to control the wireless network and sensor nodes
on an IoT-enabled platform, the prototype offered continuous monitoring of the paddy field area as
well as warning and advisory reports. All collected data from the sensor nodes will be stored in a
database management system, allowing users access to it via tablets, smartphones, or computers.
The techniques from this research are frequently implemented in PA to increase crop productivity
through real-time monitoring of crop environment parameters. Besides, with the implementation

of PA, the dependency on manpower is reduced and costs are efficiently utilised.
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Figure 2: The e-PADI System [42].
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Sharma et al. [43] presented a fuzzy logic-based identification algorithm for determining a
suitable cropping window and minimum pest growth based on data collected from a wireless IoT-
enabled sensor network deployed in medium-grass vegetation, such as rice and sugarcane crops.
The experiments were conducted in an agricultural field in Madhya Pradesh, India, in which the
deployed IoT sensors collected moisture, rainfall, and temperature data for the area. The solution
aimed to help farmers identify appropriate planting seasons through IoT applications, as well as

prevent pest development and take proactive precautions to achieve maximum crop yields.

Site-specific farming is the practice of managing specific areas within fields rather than the
entire field. The management procedure is to identify and quantify variations between the fields,
document these differences at particular sites, and use this information to handle improvements in
management or inputs [44]. In other words, site-specific farming is the act of doing the right thing,
at the right time and at the right places. Site-specific farming uses numerous methods for
managing resources, including water, herbicides, fertilisers, and pesticides.

Site-specific weed management (SSWM), presented in [31], refers to the spatially variable
rather than uniform application of herbicides over the entire region. Selective herbicides eradicate
particular weed species while causing minimal damage to the target crop. In this sense, the sector is
divided into management areas, each of which is assigned a unique management strategy. This
process, in turn, will reduce the total crop inputs, and herbicides will be applied in a more targeted
manner. This scenario is ideal because weeds usually spread only across a few areas of the field, and
applying uniform management is thus a waste of herbicides.

Another SSWM approach was presented by Li et al. [45], who proposed a smart weed-control
system that utilised a real-time sensing system for the automatic localisation and recognition of
vegetable plants. In particular, the authors developed a system that accurately distinguishes
vegetable plants, such as tomato and pak choy, from weeds in a real-time manner by using an
integrated sensing system consisting of camera and color mark sensors. Through real-time

identification, an effective weed eradication method can be performed.
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Conventional fertiliser applications conducted by farmers may not meet the crop
requirements and are not resource-efficient. Farmers often inefficiently apply fertilizers with
regard to the amount and type of fertiliser at a particular stage of crop development. Thus, an
appropriate nutrient management strategy could help boost the low recovery efficiency of fertilizer
that results from excessive usage. Site-Specific Nutrient Management (SSNM) was developed as an
integrated nutrient management strategy through a web application decision-support software
called Rice Crop Manager (RCM), presented in [46]. The quantitative relationship between nutrient
supply and crop demand, which differ enormously in space and time, was considered. SSNM serves
to recommend the application of an acceptable amount of fertilizer to the rice crop at the
appropriate growth stage through RCM. The SSNM was studied in irrigated ecosystems and
demonstrated a substantial improvement in rice yield throughout Asia.

Precise nutrient administration may be enabled by quantifying the site-specific nutritional
status of the soil [1]. The objective is to create an on-site model by using aerial images to map out
the plantation areas for nutrient distribution. The aerial images provide an accurate determination
of spatial variability, allowing for the identification and analysis of subsequent sampling sites. The
nutrient distribution model for the particular sampling sites will then be obtained by utilising geo-
statistical tools. With this method, the soil preparation process can be sped up by removing the
need for time-consuming manual sampling and labor-intensive laboratory research.

Crop health is a critical consideration requiring monitoring, as crop diseases may result in
substantial economic losses due to decreased yield and quality. Crops should be monitored
continuously to identify pathogens early and prevent them from spreading, as they are known to
alter the biophysical and biochemical characteristics of crops. However, manually inspecting an
entire crop will take months. Thus, the implementation of an automated disease detection
system is necessary. By analysing crop imaging data to monitor improvements in plant biomass and
health, pathogens can be identified early on, allowing farmers to interfere and minimize losses for a
possible higher yield achievement [31]. The information would be beneficial for the
implementation of site-specific disease control (SSDC), an application of pesticides on crops using
variable rate applications. It has the benefit of using less pesticide when adhering to the

recommended application rate for a diagnosed disease, such as fungicides [47].

A significant number of studies have been conducted in recent years on the applications of
mobile robots for farming activities such as planting, inspection, spraying, and harvesting. In PA,
automation and robotics have become a few of the main frameworks that focus on minimising the
environmental impact whilst maximising agricultural produce [6].

Agricultural operations must be carried out by using a variety of robots and vehicle systems,
depending on the type of land and service criteria. For example, a tractor is highly capable of

traversing across muddy surfaces. However, the tractor’s massive structure restricts its application
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to a small area. Thus, agricultural operations in the small area must be executed by mobile robots.
The implementation of these mobile robots in agriculture can be categorised based on different
agricultural operations, including planting, inspection, spraying, and harvesting. Naik et al. [48]
proposed an autonomous seeding robot that has been designed using the Agribot platform, an
automated system for measuring soil moisture, weather and crop data based on IoT technology.
Additionally, this tool is capable of visualizing real-time results, performing analytics, and
generating automatic reports. An infrared (IR) sensor was also used to track the state of the seed
tank and detect crop rows. Hence, the proposed technique enables an efficient seed sowing.

Park et al. [49] designed a fruit-and-vegetable harvesting robot that can harvest a variety of
fruits and vegetables without any additional or complex control. The designed robot’s performance
was verified through lab and field experiments, which showed a promising success rate of 80.6%

and a total harvesting time of 15.5s.

Agricultural fleet management is the process by which farmers or machine contractors make
choices on resource distribution, scheduling, routing, and real-time tracking of vehicles and
materials. Fleet management techniques are employed to assist in decision-making to optimise
certain aspects for the more efficient performance of the tedious management task [50].
Additionally, fleet management encompasses the method of supervising the usage and operation of
machines. Also, the administrative functions associated with them, such as the coordination and
dissemination of tasks and related information address heterogeneous scheduling and routing
issues.

Achillas et al. [51] developed a voice-driven fleet management system called V-Agrifleet.
The system features a voice-driven functionality and facilitates information sharing between all
machine-to-machine pairs in the fleet. For example, during a harvesting process, the harvester
operator could identify on the map the location and operating status of a selected transport device,
such as whether it is traveling to the depot or to a field, whether it is carrying a load or not, or
whether a malfunction has occurred. Along with locating transport trucks and farm equipment, the
application offers a concise image of the operating status of both main (e.g., harvesters) and
secondary (e.g., transport) groups. Each operator offers real-time information exchanged amongst
all authorised users through formalised voice commands during distinct events of the service, such
as when loading is complete or when harvesting in a field is complete. By using the V-AgriFleet
app, the fleet is contextually conscious of each unit’s operation and therefore adapts the
configuration to their detected statuses by empowering them with decentralised decision-making

capabilities.
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Table 3: Summary of VRA in PA.

Application of

L . References Technologies Summary
Precision Farming
Traceability [37] GIS A decision support framework capable of storing, managing,
analysing, and visualising all types of knowledge (agriculture
data, plot data and pest and disease data) on a single platform
[38] GIS Uses nuclear magnetic resonance profiling on GIS data of durum
wheat fields to evaluate metabolic expression of durum wheat for
selective watering and herbicide spraying
[1] GPS GPS implemented on agricultural machinery helps coordinate
location and time information for crop sampling purposes.
[1] Satellite imaging . .
[39] Aerial photography GPS mapping functions
Information-driven [42] loT-based The integration of microcontrollers and sensor nodes on an loT-
crop production monitoring and enabled platform for crop monitoring
advisory system
[43] loT-based Utilized an loT-based sensor network to collect environmental
monitoring and data and proposed a fuzzy logic algorithm based on the data to
advisory system determine suitable cropping window with minimum pest growth
for crop production
[2] GPS Collecting georeferenced data to impose on crop production
[2] GNSS decisions
[41] Remote sensing A systematic data collection of crop nutrients and health
conditions over large geographical areas
Site-specific farming [31] SSWM Selective herbicides spraying on crops according to management
zones
[45] SSWM A weed control system that utilizes camera and color sensors for
automatic localization and recognition of vegetable plants
[46] SSNM A system recommendation on the application of a suitable amount
of fertilizer to crops at the appropriate growth stage
[47] SSDC Pesticides are applied to crops in small amounts that do not
surpass the application rate suggested for the detected disease.
Field robotics [48] Agribot The Agribot platform was used to develop an autonomous
seeding robot. An infrared (IR) sensor was used in this production
to track the state of the seed tank and to detect rows.
[49] Harvesting robot Designed a universal fruit-and-vegetable harvesting robot
Fleet Management [51] Voice-driven fleet A decentralised decision-making platform for agriculture

management
system

machinery and transportation that integrates voice-activated
capabilities and facilitates information sharing between the fleet’s

machine-to-machine pairs.

4 The Rise of Precision Agriculture in the Farming Industry
The history of PA demonstrates that it has been driven more by technological

developments than by advances in information analysis and decision support. For example, when
GPS and yield monitors were first implemented in PA, they were seen as technical advancements
that could be applied to existing agriculture machinery to increase its value. The incorporation of
GPS into agricultural machinery paved the way for many other technical advancements in PA.
However, a current shift seems to have occurred in PA towards a greater emphasis on data analysis
and decision support systems.

Variable rate technology (VRT) combines both physical and digital technologies, such as on-
farm machinery, drones with the integration of artificial intelligence (AI), machine learning (ML),
deep learning (DL), and hyperspectral imaging [35]. These technologies aid in the development of

information analysis and decision support systems in PA. VRT refers to a technology that enables
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variable rate application of materials in PA [52]. It is one of the most notable advantages for

agriculture to come out of the era of digitisation.

4.1 Applications and Technologies
Similar to VRA, VRT in PA can also be further classified into five agriculture applications,

including traceability, information-driven crop production, site-specific farming, field robotics, and
fleet management. The following subsections present an overview of these applications.

Meanwhile, the summary of these application technologies is tabulated in Table 4.

The normalised difference vegetation index (NDVI) is a graphical tool used for crop
monitoring through satellite or multispectral cameras that uses light reflectance in the visible and
near-infrared (NIR) wavelengths to evaluate the amount and health of vegetation in an area [53].
The data collection stages, primarily in crop monitoring and mapping functions, are evolving from
conventional multispectral imaging into hyperspectral imaging. Hyperspectral imaging is a more
sophisticated technique than multispectral imaging in that it can acquire a precise spectral
response to target features [41].

Hyperspectral imaging can detect subtle variations in ground covers and their evolution over
time [54]. The more specificity in a scene, the more likely it is that unique crop characteristics and
physiological characteristics can be identified. It is now possible to recognise and identify crop
pathogens, pests, and nutrient deficits in vegetation, owing to the potential of comparing spectral
signatures with variations in plant physiology [55]. Hyperspectral imaging can also identify and
classify different types of weeds, wild vegetation, and crop varieties. Each species of vegetation and
variety of crops has its unique spectral signature. However, owing to spectral resolution
limitations, the retrieved variables’ accuracy is frequently limited, and early signals of crop
stresses, such as nutrient deficiency and crop disease cannot be detected effectively and promptly.
Nevertheless, hyperspectral imagery functions are better than multispectral imagery to facilitate a
more accurate and timely crop physiological status detection [54].

Hyperspectral data may be analysed by using ML and DL algorithms because they can
efficiently process a large number of variables [54]. Researchers have used different ML and DL
algorithms with hyperspectral images for agricultural applications [54]. ML and DL have a versatile
and effective computational approach for processing the massive volume of data contained in pre-
processed hyperspectral images. Although ML and DL models are powerful, one must still bear in
mind that large-quantity and high-quality training datasets limit power outperformance [56].

An example of hyperspectral data applications in precision farming utilising ML is presented
by Zhang et al. [57]. The authors presented a quantitative estimation of wheat stripe rust, one of
three major wheat rust diseases, by using fractional order differential equations to improve the
spectral information and reduce noise while the Gaussian process regression (GPR) ML model is

used to construct models for estimating the severity of wheat stripe rust disease. Conversely, Li et
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al. [58] presented a study for predicting the anthocyanin content in mulberry plants through
hyperspectral imaging, least squares-support vector machine, and extreme learning machine
models. Falcioni et al. [59] adapted AI algorithms in combination with hyperspectral imaging for

the accurate classification of eleven lettuce plant varieties.

Smart crop monitoring through the use of IoT technology is the latest state-of-the-art
feature in precision farming, with the aim to optimise resource use and crop development through
real-time, accurate, and location-dependent adjustments [60]. The more IoT sensors used to track
the data points of crop conditions, the higher the possibility of predicting and foreseeing various
crop changes and making faster and better decisions. Several technical challenges exist with the
massive use of IoT applications in farm management, such as reliability, scalability, and data
transparency issues [61]. These issues happen because diverse and high-dimensional data streams
from sensors should be ingested in real-time, delivered, and analysed, usually in a short time, to
meet the demands posed by several agricultural applications [2]. Hence, these 10T sensors exploit
the 5G technology’s low power transmission and reliability given that PA relies heavily on event
monitoring that demands data stream processing and consequently requires lower latency and
higher bandwidth [62]. Therefore, the superfast 5G network will play a critical role in this PA
application [4].

With the advent of smart crop monitoring integration with cloud computing and IoT
technologies, a challenge arises in dealing with large-scale analysis of agricultural data [13]. Big
data are expected to play an essential role in the PA domains. High-performance, scalable learning
systems for data-driven discovery can turn farm management systems into Al systems, providing
richer real-time recommendations and automation of several agricultural procedures [2]. Raw and
unstructured data captured via several pre-configured IoT sensors are sent to the cloud for
processing with the help of big data analytics. The processed result simultaneously and
automatically reaches the customers. In agriculture, the decision-making trends have been passed
down through generations of farmers; but now, with the advent of advanced computational
technologies and complex data processing capabilities, the massive data being captured daily can
be exploited to establish a Decision Support System (DSS) for smart farming [13]. The collaboration
of Big Data with Cloud Computing and IoT technologies has transpired a new range of applications
spanning the area of agriculture [13]. Although big data are widely used in agriculture, they are only
relevant in some instances, depending on the farm and its degree of technology acceptance [63].
Kamilaris et al. [64] cited 34 works where big data were used in agricultural applications. Factors
such as climate changes, crops condition, and farmer’s decision-making, play an important role in

adopting big data practices.
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Precision irrigation techniques presented in [31] is a water management site-specific
technique that aims to improve the efficiency of water use so that the resource is applied effectively
in the right places at the right time and in the right quantity. Detecting the areas where major
irrigation is needed can help the farmers save time and water resources.

In addition, a water management model mentioned in [1] is capable of monitoring and
scheduling daily crop water requirements within an observed grid. This GIS user-interface
technique linked with the water management model as shown in Figure 3 is capable of assisting and
improving the decision-making process in water management based on parameters such as the

irrigation requirement, rainfall, effective rainfall, and drainage requirement.
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Figure 3: GIS-based computer model to compute spatial water requirement [1].

Targeted spraying of herbicides, fertiliser and pesticides is also a major contribution in site-
specific farming to ensure the right amount of chemical is applied at the right time to obtain
optimal yield and minimise its negative impact on the environment. Stajnko et al. [65] proposed a
targeted spraying method on an apple orchard that selectively delivers pesticide spray with respect
to the characteristics of the targets. The density of an apple tree canopy was detected by ultrasound
sensors controlled by a microcontroller. The analysis focused on the detection of appropriate
thresholds on 15 cm ultrasound bands, which corresponded to maximal response to tree density,
and this feature was selected for accurate spraying guidance. The employment of this method
showed a reduction in the amount of spray delivered by up to 48.15%.

Apart from using pesticides, biological solutions are being implemented to control the
excessive usage of chemicals in agriculture practice [66]. Metarhizium Anisopliae is an
Entomopathogenic Fungi (EPF) that acts as an environmentally friendly biological control agent for
rhinoceros beetles [67].

An example of crop health monitoring by using intelligent site-specific farming technology

was presented by Devi et al. [68]. In particular, the authors proposed an intelligent bean cultivation
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approach that utilises computer vision, [0T, and spatio-temporal DL strategies for real-time
discrimination between healthy and diseased bean leaves, weed detection, and process control, as

well as site-specific water sprinkling.

Advanced technology allows the deployment of autonomous robotics. UAVs, commonly
referred to as ‘drones’, are the latest advanced equipment in the field of robotics. Drones are
typically associated with military, industrial, and other advanced operations; however, with recent
advances in sensor and information technology over the last two decades, the application of drones
has expanded to include agricultural applications [30]. Drones are manufactured to become
smarter, thereby widening their scope of application in the agricultural sector. Drones provide
comprehensive benefits that help to accurately monitor food crops, especially large agricultural
crops [3]. Drones can carry out regular air monitoring of crops to identify their status at regular
intervals. Site-specific disease control can be implemented by integrating UAVs. UAV-based data
processing technologies use crop imaging information to identify changes in plant biomass and
their health. Moreover, utilisation of pesticides, water, and fertilisers can be accurately monitored.
Such a process is possible because UAV targeting helps in the timely and highly spatially resolved
spreading of fertilizer [31].

Fleet management views prescriptive maintenance and real-time environmental
adjustments, aimed at improving performance and extending the useful life of farm equipment and
other assets, as well as decreasing the risk of mold, fire, and other threats. Currently, fleet
management tools focus on real-time insights not only to improve logistics but also to reduce
costs, and create stronger digital connections amongst all the stakeholders. Current fleet
management also aims to protect valuable assets, including staff, equipment, inventory and land by
identifying the conditions that present a hazard to health, safety or productivity at an early stage
[60].

A global telematics platform provider called 3Dtracking proposed an agriculture fleet
management system based on a case for industry-specific software solutions [69]. The use of a
telematics platform enables farmers to view their farms in accordance with various points of
interest (POI). Real-time agricultural transport and machinery, including field robotics detection
and operational information, are made available with this tool. Additional features of reports and
alerts for the management of these agricultural transport and machinery are implemented allowing
for efficient fleet control decision making. Additional functionality for fuel tracking was embedded,
and the data is being used to measure and provide insights such as distance covered or working
hours in relation to fuel usage. Fuel dispensing at the farm fuel depot is also added to provide

further monitoring of fuel usage in relation to work achieved in the fields. This added procedure
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helped improve the management of fuel and avoid theft or waste in the case of vehicles idling
unnecessarily. With further studies and developments in the future, features such as driver’s
authentication, behaviour, working hours, and fuel consumption would improve agriculture

productivity as a whole.

Table 4: Summary of VRT in PA.

Application of

L . References Technologies Summary
Precision Farming
Traceability Hyperspectral imaging  Identification of unique physiological crop traits to
[41] identify crop diseases, pests, and nutrient
deficiencies
ML and DL algorithms Tools for analysing a large number of variables
[54] from information captured by hyperspectral
imaging.
Information-driven loT technologies Utilisation of many loT sensors to track the data
crop production [61] points for higher possibilities of predicting and
foreseeing various farms’ changes to make faster
and better decisions.
[4] 5G communication To ensure real-time data execution with low latency
technology for crop monitoring 10T sensors.
Big data Raw and unstructured data captured via several pre-
[63] configured loT sensors are sent to the cloud for
processing with the help of big data analytics.
Site-specific Precision irrigation A water management site-specific technique to
farming [31] techniques improve the efficiency of water use by monitoring
and scheduling daily crop water requirements.
Targeted spraying of A programmable ultrasonic sensing system for
[65] herbicides, fertilizer, targeted spraying in orchards that showed a
and pesticides reduction in the amount of spray delivered
[68] DL A tool for crop-monitoring (real-time
discrimination between healthy and diseased
leaves, weed detection, and process control)
Field robotics [30] UAV Crop monitoring, disease control and crop spraying
at regular time intervals
Fleet Management Fleet management Provides real-time agricultural transport and
[69] system utilizing machinery detection and operational information

telematics platform

with 3D POI.

4.2 PA Issue and Recommendations
Agriculture production is heavily reliant on water and soil factors, both of which must be

used more efficiently. These resources are managed effectively with the help of PA practices
through a set of information technologies (IT) such as GPS, remote sensors, UAV, ML, DL, and
many other options [70]. PA is equipping farmers with effective instruments for achieving
productivity in agriculture. Different types of sensors, positioning and navigation systems, and
variable rate technology are well-known components of PA. Drones and robots are promising tools
that enable farmers and managers to collect information or perform particular actions, including
irrigation and fertiliser spraying in remote areas or tough conditions [24]. PA adoption can be
substantially improved if a combination of more precise and robust sensors specialised for each
activity and the end-users (farmers) is applied. This process is done to receive quantified
information about the farm profit augmentation and the positive sustainability impact, combined

with reduced investment cost [47].
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The implementation of PA is not limited to one or two technologies or innovations, as
certain technologies and innovations may be applicable in one field but not in others. A useful,
practical, and suitable transition to technology is necessary. Each field should have its own set of
technologies, such as crop planting methods and customized fertiliser application technology. PA’s
objective was to achieve site-specific management (SSM) through cost-saving agriculture methods
to increase yield production [1]. Table 5 summarises the issues and future recommendations that
can help improve PA practices.

Multiple possible future research lines exist in the context of PA, focusing on technologies
that have not been researched as often, such as the utilisation of hyperspectral imaging with UAV
for crop mapping, which requires further sampling. Although UAVs are currently used in the
agricultural sector, their integration with hyperspectral imaging has not been extensively used in
PA due to their limited accessibility outside of the scientific community. The acquisition,
processing, and evaluation of hyperspectral imaging continue to be difficult tasks due to its large
data volume, high data dimensionality, and complex information analysis. Performing a
comprehensive and in-depth study of hyperspectral imaging technologies for agricultural

applications is therefore advantageous [54].

Table 5: PA Issues and Future Recommendations.

Methods Issues Recommendation
Utilisation of hyperspectral imaging Challenging data acquisition, processing, and evaluation Perform a comprehensive study on
with UAVs for crop mapping of hyperspectral imaging hinders its integration of hyperspectral imaging, which requires
imaging technologies with UAVs further sampling
Adopting 5G communication for Advances in communication technologies with the Mobile operators across the globe should
easy-access to data storage and real- implementation of 5G networks in all countries largely contribute to smart agriculture by
time application building out their digital networks to support
5G networks
DSS for crop management A farmer’s lack of PA skills is a major element preventing Introducing a tool or framework that
IT adoption in the agriculture sector. encompasses the required PA knowledge that
Farmers usually opt to implement hasty trial-and-error directly supports the decision-making
tactics, which significantly raise the adoption cost process of selecting the appropriate
technology for a farmer’s needs
The integration of hardware and The generation of a massive amount of crop data to be Specific attention should be given to research
software processed creates research opportunities. It could help on the optimised methods of PA application
identify new advancements in the context of PA using a to primarily reduce undesired yield and
variety of methods, providing farmers with useful insights improve the carbon footprint of crops

on how to increase yields

All countries are expected to introduce 5G networks in all fields; hence, Internet prices are
expected to decrease significantly and connectivity will improve [71]. Investment costs for PA are
predicted to substantially decrease due to 5G use, which would benefit farmers. Farmers would be
well equipped for smart farming, as they would be able to predict and prevent crop diseases via
their cell phones. If the implementation of 5G is largely adopted, mobile operators are
then required to contribute significantly to smart agriculture by expanding their physical networks
to support PA applications. For instance, large sensors will be able to gather data in the field and
store it in the cloud, where it can be analyzed whenever convenient [4].

Another essential aspect that future research should focus on is the need for farmers to

acquire additional PA knowledge. It has become one of the significant factors discouraging them
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from implementing IT in their fields. Accordingly, a tool or framework that encompasses this
required knowledge and that directly supports the decision-making process of selecting the
appropriate IT for a farmer’s needs without relying solely on trial-and-error strategies that further
increase adoption costs would be highly desirable [70]. The information that the crops offer can
only be turned into profitable decisions when they are efficiently managed. PA is growing rapidly
owing to recent developments in data management, as data has become a vital component in
modern agriculture, assisting farmers with critical decision-making. [63]. Hence, farmers should
have a DSS for their crop management decision [1].

The integration of software and hardware solutions has resulted in the generation of a
massive amount of data that can be processed by using a variety of methods, providing farmers
with useful insights on how to increase crop yields [47]. Considering that the adoption of
innovation solutions promises exponential growth in PA application, further research should be
carried out to improve the carbon footprint of crops. All these research opportunities could help to
identify new advancements in the context of PA [70]. Hence, specific attention should be given to
research on the optimised methods of PA application to primarily reduce undesired yield.

PA is forecast to hit USD11,107 million by 2025, rising at a 13.97% compound annual growth
rate from 2019 to 2025 [72]. Although advancements in precision agriculture encourage the
adoption of innovative solutions, the practice’s implementation is constrained by several

challenges. The main factors affecting the adoption of PA are as follows [24]:

a) Political and legal support

b) Decision support systems and user interfaces
¢) Experienced research team works

d) National educational policy

e) Success in commercialisation of the PA system

The adoption of advanced technologies in PA continues to be critical for progressing towards
new and sustainable agriculture capable of illustrating the maximum potential of data-driven
management in addressing the complexities of food production in the 21 century. Agriculture 5.0
is a priority over the next decade for the majority of large agricultural machinery manufacturers.
Hence, governments, researchers, and industry enablers play a critical role in aiding farmers in
agricultural management systems through digital solutions powered by robotics and artificial
intelligence [63].

5 Conclusion

To meet the expanding population, agricultural products for food production are predicted
to increase by 70% by 2050. However, conventional practices show many signs of inefficiency that
negatively impact the environment and yield production. PA is one of the fastest-growing

agricultural technologies. PA strives to improve agricultural productivity, land-use efficiency,
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production costs, environmental quality, and food supply sustainability. Despite expanding
research on new technology adoption, PA continues to suffer from a lack of agreement on its
conceptualisation. Thus, this research aimed to synthesise the literature on the adoption of
agricultural technologies in the farming sector from its conventional era to its current practices.
This work has shown that with PA practices, using full mechanisation of high-tech equipment can
reduce agricultural inputs through site-specific applications as it better targets inputs to the spatial
and temporal needs of agriculture crops. This research provides readers with an overview of the
evolution of PA throughout the years, categorised based on five major PA applications. Farm
managers and agricultural analysts may find the information in this work beneficial in identifying
PA implementations as well as in deciding the PA technologies to be adopted.
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