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Abstract 
Agricultural products for food production are expected to increase by 
70% in 2050 to cater for the rising population. However, conventional 

agriculture (CA) practices cause unpredictable production, resource 
overutilisation, and unregulated waste production, while affecting climate 
change through greenhouse gas emissions. Precision agriculture (PA) is one 
of the fastest-growing agriculture technologies. PA strives to improve 
agricultural productivity, land-use efficiency, production costs, 
environmental quality, and food supply sustainability. Despite expanding 
research on new technology adoption, PA continues to suffer from a lack of 
agreement on its conceptualisation. Thus, this study examined agricultural 
developments from the conventional era to the current PA trends, with a 
focus on precision farming. This initiative would assist farm managers and 
agriculture analysts in identifying PA implementations and current PA 
technology for adoption while providing decision-making support. 

Discipline: Agriculture & Information Technology; Spatial Technology. 

©2024 INT TRANS J ENG MANAG SCI TECH. 

Cite This Article: 
Shaari, S. A., Radzi, N. A. M., Shaaya, S.A., Azmi, K. H. M., Azhar, N.A., and Shahruddin, S. A. (2024). Recent 

Trends in Precision Agriculture: Applications & Challenges in Precision Farming. International 
Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 15(3), 15A3B:     
1-24.  http://TUENGR.COM/V15/15A3B.pdf   DOI: 10.14456/ITJEMAST.2024.15 

 

1 Introduction 
Concerns about food security have long plagued many developed and emerging economies 

worldwide. The deterioration of crop yield essentially affects food security. Factors such as 

population growth, decreasing arable land for crop production, water scarcity, climate conditions, 
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and a declining or aging farmer population have worsened this issue [1]. Enormous demand for food 

production must be served cost-effectively without wasting resources such as water and electricity. 

The world’s population is projected to be 34% larger than the year 2020, which may hit 9.6 billion 

people by 2050 [2]. The demand for agricultural products for food production is expected to 

increase by 70% in the same year to cater to the rising population [3]. At the same time, the 

agricultural sector must address severe challenges due to conventional farming practices that lead 

to erratic production, overuse of resources, and unrestrained waste production [4]. Precision 

agriculture (PA) is a recent advancement that addresses these challenges through farm 

management approaches to optimise yield productivity. 

In [5],[6], [16]-[18], PA has been proven to have significantly improved conventional 

agriculture (CA) practice and consequently improved crop yield. However, a variety of stressors, 

including rapid population growth, natural resource depletion, environmental pollution, crop 

diseases and climate change, pose increasing threats to the global agricultural sector that need to 

be addressed in PA. The Internet of Things (IoT) and advanced machinery are among the most 

common technologies adopted for effective farming. A need also arises to integrate the current PA 

practice with the use of cutting-edge technology, such as artificial intelligence (AI). Table 1 

summarises the recent reviews in the field of PA based on their agricultural application areas. 

Despite the abundance of literature on this subject, this research highlights the theoretical gaps in 

other advanced engineering concepts that can be integrated with the current PA practice. A review 

of PA technologies is presented and thus provides insights for other researchers to utilise the 

information in the PA sector. 
 

Table 1: Summary of recent PA reviews. 
Author Year Area Research Focus Research Gaps 

Chin et al. [9]  2023 Traceability The automation of plant disease detection using 
drones. Presented an identification of common 

diseases, pathogens, crop types, drone categories, 
stakeholders, machine learning (ML) tasks, data, 

techniques to support decision-making, agricultural 
product types, and challenges of drone-based plant 

disease identification in literature. 

Decision support system for plant 
disease detection. 

Drone/unmanned aerial vehicle 
(UAV) communication technologies. 

 

Shin et al. [10] 2022 Traceability Machine vision-based automation in detecting stress 
and diseases on crops, leaves, fruits, and vegetables. 

Real-time detection 
Decision support system for machine 

vision-based automation. 
Cellular communication technologies 

Corwin et al. 
[5] 

2019 Traceability Monitoring tool to address soil spatial variability 
mapping. Also presented a characterisation of 

spatial variability of soil salinity using 
georeferenced soil electrical conductivity (ECa). 

Machinery coordination. 
Decision support system for crop 

sampling and monitoring and disease 
inspection. 

Mavridou et al. 
[11] 

2019 Traceability Machine vision applications in PA, support fruit 
grading, fruit counting, yield estimation, and plant 

health monitoring. Also, focus on machinery 
coordination and agricultural harvesting robots.  

Communication technologies 
Drone/UAV applications 

Rivera et al. 
[12] 

2023 Information-
driven crop 
production 

Reviewed light detection and ranging (LiDAR) 
technologies for crop cultivation. Categorized 
LiDAR applications into crop-related metric 
estimation, tree and plant digitisation, vision 

systems for object detection and navigation, and 
planning and decision support. 

Cellular wireless communication 
technologies such as 3G, 4G Long-

term Evolution (LTE) and 5G. 
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Author Year Area Research Focus Research Gaps 
Verma et al. 

[13] 
2020 Information-

driven crop 
production 

Multimedia data collection and decision-making 
ability approach in PA with IoT sensors along with 

wireless communication technologies.  

Wireless sensor network (WSN). 
Cellular wireless communication 

technologies such as 3G, 4G LTE and 
5G. 

Thakur et al. [7] 2019 Information-
driven crop 
production 

WSN technologies adopted for PA as well as 
available sensors and communication technologies.  

Cellular wireless communication 
technologies such as 3G, 4G LTE and 

5G 
Méndez-

Vázquez et al. 
[14] 

2019 Site-specific 
farming 

Pest detection management control using site-
specific zoning techniques. 

An unmanned aerial system (UAS) is used to 
capture georeferenced data using high-resolution 

multispectral images. 

Site-specific monitoring (nutrients 
and diseases). 

Site-specific spraying (herbicides, 
pesticides, fertiliser). 

Site-specific irrigation. 
Hyperspectral imaging. 

Norhashim et 
al. [15] 

2023 Field robotics UAV for PA in Malaysia based on technical 
requirements  (weight, wing span, wing loading, 
range, maximum altitude, speed, durability, and 

engine type), as well as sensors and data processing 
methods. Applications of UAVs are mostly for 

weed mapping, crop growth and health monitoring, 
crop production estimation, and crop spraying. 

Combination of several advanced 
machineries for robust and efficient 

robotic systems. 
Cellular wireless communication 

technologies such as 3G, 4G LTE and 
5G. 

Gonzalez-De-
Santos et al. [8] 

2020 Field robotics Advanced machinery with the utilisation of 
different types of sensors for specific purposes. 
Translation of automated factory concept into 
automated farm utilizing advance machinery. 

Mobile robots such as UAVs and 
UAS 

Saiful et al. [6] 2020 Field robotics Specific advanced machinery of robotics and 
vehicles to execute specific agricultural operations 

(planting, inspection, spraying, and harvesting) 
according to its limitation capabilities 

Combination of several advanced 
machineries for robust and efficient 

robotic systems. 
UAV for monitoring, spraying, 

seeding, etc. 
Martin et al. 

[16] 
2020 Fleet 

management 
Field operations in agriculture, focusing on the 

optimization of agricultural machinery’s movement 
in sugarcane production. Approaches based on 

spatial division configuration, route planning, and 
cost parameters (fuel and time consumption) were 

presented.  

Cellular wireless communication 
technologies such as 3G, 4G LTE and 

5G 
Real-time vehicle, machinery 

detection and coordination and 
operational information. 

 

PA applications have proven successful in diverse agricultural sub-branches, including 

precision horticulture (PH), precision farming (PF), precision livestock farming (PLF), and precision 

viticulture (PV). These sub-branches are illustrated in Figure 1. PH is a production management 

approach in which precise inputs and practices are implemented at precise locations within an 

orchard or particular sites with the intention of ‘doing the right thing’, ‘at the right time’ and ‘in 

the right way’ [17]. PH normally involves the cultivation, processing, and marketing of fruits, 

vegetables, flowers, medicinal, aromatic, and ornamental plants [18]. PLF is described as the 

implementation of process engineering principles and methods in livestock farming to 

automatically monitor, model, and manage animal production. PLF also involves the conversion of 

bio-responses into pertinent information that can be easily applied to various management aspects 

focusing on both animals and the environment [19]. PLF tools are designed to be 

a completely automated management system that provides reliable data and warnings based on 

continuous animal monitoring [20]. Meanwhile, PV refers to the method of using site-specific 

techniques in vineyard production to enhance grape quality and yield while reducing 

negative environmental impact [21]. PV focuses on maximising the oenological potential of 

vineyards, particularly in regions where high-quality wine production standards are enforced [22]. 
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In this research, PF is the main focus in which this article reviewed the recent trends and 

challenges in PF. PF is practiced in both small and large farms, implying a management strategy to 

increase productivity and economic returns while minimising the environmental impact [23]. The 

rapid development of recent technological advancements in information and communication 

technology (ICT) and geographic science provides tremendous opportunities for the development 

of optimised distributed information systems for PF. This strategy will ensure their ability to meet 

the nation’s food security needs in the face of diminishing natural resources, particularly land and 

water. Applications of PF can be further classified into five sectors, including traceability, 

information-driven crop production, site-specific farming, field robotics, and fleet management 

[24]. Thus, this research aimed to gather the existing knowledge on technologies used in the PF 

sector, categorised based on the five sectors, and to review the existing PA technologies 

implemented from early techniques to their current agricultural practices.  

This paper is structured as follows. Sections 2 and 3 thoroughly describe the CA and PA from 

the PF perspective, respectively. Section 4 discussed the state-of-the-art of PA technologies in PF. 

Further recommendations and practical considerations are also provided. Finally, Section 5 

presented the review conclusion. Table 2 lists the acronyms used in the paper. 
 

 
Figure 1: Precision agriculture categorization [24]. 

 
Table 2:  Definitions of acronyms and notations. 

Acronym Definition  Acronym Definition 
AI Artificial intelligence  PLF Precision livestock farming 
CA Conventional agriculture  POI Points of Interest 
DL Deep learning  PV Precision viticulture 
GIS Geographic information system  SSDC Site-specific disease control 
GPS Global positioning systems  SSNM Site-specific nutrient management 
ICT Information and Communication Technologies  SSWM Site-specific weed management 
IoT Internet of Things  UAV Unmanned aerial vehicle 
ML Machine learning  VRA Variable rate application 
PA Precision agriculture  VRT Variable rate technology 
PF Precision farming  WSN Wireless sensor network 
PH Precision horticulture    
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2 Literature Review 

2.1 CA Background 
Studies on the origins of farming history can be traced back to the 1930s through 

archaeological excavations and investigations. The study by Tauger [25] showed that early humans 

in the Neolithic Revolution developed agriculture approximately 10,000 years ago in response to a 

seasonal climate following the end of the last ice age. Agriculture has played an important role in 

the advancement of human civilisation. Even though early farming techniques were influenced by 

local climate conditions, most farmers continued to plant on the same field year after year until the 

soil nutrients were depleted. Agricultural techniques such as irrigating, intercropping, and crop 

rotation have improved farming productivity over time. It is a primitive form of agriculture that 

heavily relies on local cultures, instruments, natural resources, organic fertiliser, and the farmers’ 

cultural practices [26]. North Africa, East Africa, and West Africa are amongst the poorest countries 

in the world, with subsistence and small-scale traditional agriculture remaining the mainstays of 

their economies [27]. However, farming has changed dramatically over the last few centuries, and 

many countries have shifted towards CA practices [28]. 

CA is the most common form of agriculture, where farmers typically utilise synthetic 

chemical inputs that include fertilisers, pesticides, herbicides, and other continuous inputs. CA 

techniques were developed in the late 19th century but were not widespread until after the Second 

World War [29]. However, half of the world’s population notably continues to practice CA [26]. In 

countries that practice CA, synthetic chemical resource inputs are handled uniformly across fields, 

ignoring the naturally occurring spatial variability of soil and crop conditions between and within 

fields [5]. Consequently, CA is usually resource and energy-intensive. 

2.2 CA Issues  
CA adopts tedious manual crop inspections, whereby human experts constantly monitor 

crops to detect diseases early and prevent them from spreading. However, farmers with hectares of 

land experience difficulty reaching every nook and cranny of a crop for regular inspection [30]. 

Additionally, these manual assessments can be time-consuming and cost-intensive [31]. 

The presumption of soil nutrient classification in CA is that a sampling point indicates the 

status of the specified region and that variances within it are distributed randomly [1]. However, 

intensive laboratory testing for soil nutrients such as nitrogen, phosphorous, and potassium is 

time-consuming [32]. The collection of a huge number of soil samples involves the laborious task of 

gathering soil chemicals and requires expert laboratory operators, increasing cost and time. These 

limitations led to undersampling, which renders it inaccurate for the estimation of soil fertility in 

large crop areas. 

Currently, 70% of the global water consumed is used for crop irrigation [31]. However, a 

water management control system that allows continuous flooding of water to provide the best 

growth environment for crops (e.g. rice), is seriously lacking [33]. In addition, risks of groundwater 
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contamination and other environmental threats exist as a result of the excessive usage of 

herbicides, fertilisers, and pesticides in agriculture.  

Herbicides are substances used to keep the growth of unwanted plants at bay. Application of 

herbicides in CA is the most common practice of weed control. However, farmers tend to spray the 

same amount of herbicides over the entire crop, even in weed-free areas. Overuse of herbicides will 

eventually result in the mutation of weeds into herbicide-resistant ones. These weeds will compete 

with crops for available resources such as water and space, causing losses to crop yields and their 

growth  [31]. 

In addition, insufficient blanket spreading of fertiliser without discrimination and reference 

to the plant’s condition, as well as available soil nutrient content, can damage crop growth. It will 

ultimately result in inconsistent fertiliser distribution, either undersupplying needed nutrients to 

the plants, which will negatively impact plant development or oversupplying it, which will increase 

input costs and create negative environmental consequences [1]. 

Conventional crop spraying utilises manual air-pressure and battery-powered knapsack 

sprayers, which may lead to major pesticide losses. This insufficient method of pesticide crop 

spraying is not only time-consuming but can also lead to untimely spraying [31]. Besides that, the 

dependency on manpower methods causes inefficient labor costs. 

In a nutshell, CA adopts tedious manual crop inspection and soil nutrient sampling that 

results in either under-sampling or over-sampling. Moreover, the blanket spraying method can 

cause groundwater contamination. Legitimate concerns about the adverse environmental impact 

and production output from the use of CA methods should therefore be addressed. As such, CA 

practices are being actively transformed by adopting PA, a more precise and reliable approach to 

collecting, storing, restoring, and analysing field data. 

3 Precision Agriculture in Farming 

3.1 PA Background 
A wide range of stressors pose increasing challenges to the global agricultural sector, 

including a rising population, resource depletion, pollution, crop diseases, and climate change. PA 

is a viable approach for addressing these issues with the adoption of variable rate application (VRA) 

into farming activities [34]. VRA is an aspect of PA that automates the application of materials such 

as fertilisers, chemical sprays, and seeds to the land. The application of these materials is 

determined through precise data collection from on-field sensors, maps, and GPS that identify and 

monitor the characteristics of a specific area of land [35]. 

3.2 PA Application and Technologies 
VRA in PA can be further classified into five agriculture applications, including traceability, 

information-driven crop production, site-specific farming, field robotics, and fleet management. 

The following subsections briefly explain these applications. Meanwhile, the summary of these 

application technologies is tabulated in Table 3. 
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3.2.1 Traceability 

In agriculture, traceability refers to all stages of data collection, classification, conservation, 

and implementation related to relevant processes in the food supply chain. Its purpose is to provide 

assurance to customers and other stakeholders on the origin, location, and background of the 

product, as well as to be used in crisis management in the event of food quality and safety concerns 

[36]. Accordingly, product tracking and traceability, especially for on-farm operations, have 

emerged as one of the most crucial matters in PA research. The use of a Geographic Information 

System (GIS) as a PA tool will provide facilities for improving traceability information by linking it 

to agro-environmental situations, including soil quality, crop productivity, pest control, disease 

control, and local properties [36]. 

An example of a GIS application can be found in [37], through the web application Web 

Paddy GIS.  This web-based application decision support system (DSS) is capable of storing, 

managing, analysing, and visualising all information on a single platform. The architecture of Web 

Paddy GIS was developed by using free and open-source software. Therefore, the platform may be 

remotely accessed by users using their smart phones. The data stored on the database server 

contains agricultural information, plot location information, and information on pests and 

diseases. 

Lamanna et al. [38] presented a study on nuclear magnetic resonance profiling based on GIS 

data to evaluate the spatial variability of metabolic expression in durum wheat fields in Italy. The 

presented solution is used to adapt agronomic practices for providing water and nutrients to areas 

depending on the metabolic expression of durum wheat at three different vegetation stages. 

The use of Global Positioning Systems (GPS) on agricultural machinery provides location 

and time information for all treatments. Given that the use of GPS-enabled smartphones has 

become increasingly common, farmers can maximise it in the field by taking images of suspected 

pests or diseases and sending them to the internet cloud. With the GPS coordinates of the spot 

where the picture was taken, the potential desirable treatment will then be computed in the cloud 

system based on crop information such as type of crop, planting date, and expected harvest date. 

These pieces of information are initially stored in the cloud [39]. 

Abu Bakar and Bujang [1] reviewed how the integration of GPS-enabled mapping devices 

with sensors helps identify and analyse sampling sites by using these geo-statistical tools. Satellite 

images or aerial photography may be used to perform GPS mapping functions. Apart from using 

GPS-based devices for crop sampling, GPS data can also be applied to shipping documents so that 

the product’s origin (region, farmer, field) can be tracked and the buyer can be assured of the 

veracity of the origin claims [39]. 
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3.2.2 Information-Driven Crop Production 

Crops have initially been managed in CA under the presumption of standard soil, nutrient, 

moisture, weed, and insect conditions. The application of chemicals, irrigating, fertilizing, and 

performing such treatments have all been over- or under-applied due to uniform and untargeted 

application. However, advances in crop growth modeling, as well as in the use of software for 

monitoring and collecting data from farms, have opened the way for a new field of insights to aid 

PA decision-making [1]. The advent of GPS and Global Navigation Satellite Systems (GNSS) has 

enabled the practice of PA, which employs information technology to bring data from multiple 

sources to crop production decisions. The fundamental pieces of knowledge required to identify the 

geographic position of phenomena are critical. This is because the geographical and temporal 

variability of soil and crop variables between and within fields is the factual basis for PA. The 

purpose of georeferenced data collection is to provide accurate information about the spatial and 

temporal variability of crops to facilitate the best decision-making by PA to increase yield 

production [2]. 

Sensors and automation are vital applications in the agricultural sector. An example of its 

usage is to track the health and performance of the farm [40]. The adoption of remote sensing in 

agriculture has resulted in the systematic collection of data across vast geographical areas [2]. 

Remote-sensing applications in agriculture refer to non-contact measurements of electromagnetic 

radiation that interact with soil or plant content. The application of remote sensing focuses on a 

wide range of endeavors, including crop yield, crop nutrients, water tension, plant disease 

infestations, and soil properties such as organic matter, moisture, clay content, pH value, and 

salinity [41]. The platforms for making these measurements often use satellites, aircraft, tractors, 

and hand-held sensors. However, cloud cover also severely limits the availability of remote-sensing 

imagery from satellite and airborne platforms, whereas ground-based remote sensing is less 

affected by this constraint. Additionally, higher spatial and spectral resolution remote sensing data 

are often prohibitively expensive [41]. 

Ismail et al. [42] proposed an IoT-based paddy monitoring and advisory system called e-Padi, 

as shown in Figure 2. By using microcontrollers to control the wireless network and sensor nodes 

on an IoT-enabled platform, the prototype offered continuous monitoring of the paddy field area as 

well as warning and advisory reports. All collected data from the sensor nodes will be stored in a 

database management system, allowing users access to it via tablets, smartphones, or computers. 

The techniques from this research are frequently implemented in PA to increase crop productivity 

through real-time monitoring of crop environment parameters. Besides, with the implementation 

of PA, the dependency on manpower is reduced and costs are efficiently utilised. 
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Figure 2: The e-PADI System [42]. 

 

 Sharma et al. [43] presented a fuzzy logic-based identification algorithm for determining a 

suitable cropping window and minimum pest growth based on data collected from a wireless IoT-

enabled sensor network deployed in medium-grass vegetation, such as rice and sugarcane crops. 

The experiments were conducted in an agricultural field in Madhya Pradesh, India, in which the 

deployed IoT sensors collected moisture, rainfall, and temperature data for the area. The solution 

aimed to help farmers identify appropriate planting seasons through IoT applications, as well as 

prevent pest development and take proactive precautions to achieve maximum crop yields. 

3.2.3 Site-Specific Farming 

Site-specific farming is the practice of managing specific areas within fields rather than the 

entire field. The management procedure is to identify and quantify variations between the fields, 

document these differences at particular sites, and use this information to handle improvements in 

management or inputs [44]. In other words, site-specific farming is the act of doing the right thing, 

at the right time and at the right places. Site-specific farming uses numerous methods for 

managing resources, including water, herbicides, fertilisers, and pesticides. 

Site-specific weed management (SSWM), presented in [31], refers to the spatially variable 

rather than uniform application of herbicides over the entire region. Selective herbicides eradicate 

particular weed species while causing minimal damage to the target crop. In this sense, the sector is 

divided into management areas, each of which is assigned a unique management strategy. This 

process, in turn, will reduce the total crop inputs, and herbicides will be applied in a more targeted 

manner. This scenario is ideal because weeds usually spread only across a few areas of the field, and 

applying uniform management is thus a waste of herbicides.  

Another SSWM approach was presented by Li et al. [45], who proposed a smart weed-control 

system that utilised a real-time sensing system for the automatic localisation and recognition of 

vegetable plants. In particular, the authors developed a system that accurately distinguishes 

vegetable plants, such as tomato and pak choy, from weeds in a real-time manner by using an 

integrated sensing system consisting of camera and color mark sensors. Through real-time 

identification, an effective weed eradication method can be performed. 
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Conventional fertiliser applications conducted by farmers may not meet the crop 

requirements and are not resource-efficient. Farmers often inefficiently apply fertilizers with 

regard to the amount and type of fertiliser at a particular stage of crop development. Thus, an 

appropriate nutrient management strategy could help boost the low recovery efficiency of fertilizer 

that results from excessive usage. Site-Specific Nutrient Management (SSNM) was developed as an 

integrated nutrient management strategy through a web application decision-support software 

called Rice Crop Manager (RCM), presented in [46]. The quantitative relationship between nutrient 

supply and crop demand, which differ enormously in space and time, was considered. SSNM serves 

to recommend the application of an acceptable amount of fertilizer to the rice crop at the 

appropriate growth stage through RCM. The SSNM was studied in irrigated ecosystems and 

demonstrated a substantial improvement in rice yield throughout Asia. 

Precise nutrient administration may be enabled by quantifying the site-specific nutritional 

status of the soil [1]. The objective is to create an on-site model by using aerial images to map out 

the plantation areas for nutrient distribution. The aerial images provide an accurate determination 

of spatial variability, allowing for the identification and analysis of subsequent sampling sites. The 

nutrient distribution model for the particular sampling sites will then be obtained by utilising geo-

statistical tools. With this method, the soil preparation process can be sped up by removing the 

need for time-consuming manual sampling and labor-intensive laboratory research. 

Crop health is a critical consideration requiring monitoring, as crop diseases may result in 

substantial economic losses due to decreased yield and quality. Crops should be monitored 

continuously to identify pathogens early and prevent them from spreading, as they are known to 

alter the biophysical and biochemical characteristics of crops. However, manually inspecting an 

entire crop will take months. Thus, the implementation of an automated disease detection 

system is necessary. By analysing crop imaging data to monitor improvements in plant biomass and 

health, pathogens can be identified early on, allowing farmers to interfere and minimize losses for a 

possible higher yield achievement [31]. The information would be beneficial for the 

implementation of site-specific disease control (SSDC), an application of pesticides on crops using 

variable rate applications. It has the benefit of using less pesticide when adhering to the 

recommended application rate for a diagnosed disease, such as fungicides [47]. 

3.2.4 Field Robotic 

A significant number of studies have been conducted in recent years on the applications of 

mobile robots for farming activities such as planting, inspection, spraying, and harvesting. In PA, 

automation and robotics have become a few of the main frameworks that focus on minimising the 

environmental impact whilst maximising agricultural produce [6].  

Agricultural operations must be carried out by using a variety of robots and vehicle systems, 

depending on the type of land and service criteria. For example, a tractor is highly capable of 

traversing across muddy surfaces. However, the tractor’s massive structure restricts its application 
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to a small area. Thus, agricultural operations in the small area must be executed by mobile robots. 

The implementation of these mobile robots in agriculture can be categorised based on different 

agricultural operations, including planting, inspection, spraying, and harvesting. Naik et al. [48] 

proposed an autonomous seeding robot that has been designed using the Agribot platform, an 

automated system for measuring soil moisture, weather and crop data based on IoT technology. 

Additionally, this tool is capable of visualizing real-time results, performing analytics, and 

generating automatic reports. An infrared (IR) sensor was also used to track the state of the seed 

tank and detect crop rows. Hence, the proposed technique enables an efficient seed sowing. 

Park et al. [49] designed a fruit-and-vegetable harvesting robot that can harvest a variety of 

fruits and vegetables without any additional or complex control. The designed robot’s performance 

was verified through lab and field experiments, which showed a promising success rate of 80.6% 

and a total harvesting time of 15.5s. 

3.2.5 Fleet Management 

Agricultural fleet management is the process by which farmers or machine contractors make 

choices on resource distribution, scheduling, routing, and real-time tracking of vehicles and 

materials. Fleet management techniques are employed to assist in decision-making to optimise 

certain aspects for the more efficient performance of the tedious management task [50]. 

Additionally, fleet management encompasses the method of supervising the usage and operation of 

machines. Also, the administrative functions associated with them, such as the coordination and 

dissemination of tasks and related information address heterogeneous scheduling and routing 

issues. 

Achillas et al. [51] developed a voice-driven fleet management system called V-Agrifleet. 

The system features a voice-driven functionality and facilitates information sharing between all 

machine-to-machine pairs in the fleet. For example, during a harvesting process, the harvester 

operator could identify on the map the location and operating status of a selected transport device, 

such as whether it is traveling to the depot or to a field, whether it is carrying a load or not, or 

whether a malfunction has occurred. Along with locating transport trucks and farm equipment, the 

application offers a concise image of the operating status of both main (e.g., harvesters) and 

secondary (e.g., transport) groups. Each operator offers real-time information exchanged amongst 

all authorised users through formalised voice commands during distinct events of the service, such 

as when loading is complete or when harvesting in a field is complete. By using the V-AgriFleet 

app, the fleet is contextually conscious of each unit’s operation and therefore adapts the 

configuration to their detected statuses by empowering them with decentralised decision-making 

capabilities. 
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Table 3: Summary of VRA in PA. 

 

4 The Rise of Precision Agriculture in the Farming Industry 
The history of PA demonstrates that it has been driven more by technological 

developments than by advances in information analysis and decision support. For example, when 

GPS and yield monitors were first implemented in PA, they were seen as technical advancements 

that could be applied to existing agriculture machinery to increase its value. The incorporation of 

GPS into agricultural machinery paved the way for many other technical advancements in PA. 

However, a current shift seems to have occurred in PA towards a greater emphasis on data analysis 

and decision support systems. 

Variable rate technology (VRT) combines both physical and digital technologies, such as on-

farm machinery, drones with the integration of artificial intelligence (AI), machine learning (ML), 

deep learning (DL), and hyperspectral imaging [35]. These technologies aid in the development of 

information analysis and decision support systems in PA. VRT refers to a technology that enables 

Application of 
Precision Farming References Technologies Summary 

Traceability [37] GIS A decision support framework capable of storing, managing, 
analysing, and visualising all types of knowledge (agriculture 
data, plot data and pest and disease data) on a single platform 

[38] GIS Uses nuclear magnetic resonance profiling on GIS data of durum 
wheat fields to evaluate metabolic expression of durum wheat for 

selective watering and herbicide spraying 
[1] GPS GPS implemented on agricultural machinery helps coordinate 

location and time information for crop sampling purposes. 
[1] Satellite imaging GPS mapping functions [39] Aerial photography 

Information-driven 
crop production 

[42] IoT-based 
monitoring and 
advisory system 

The integration of microcontrollers and sensor nodes on an IoT-
enabled platform for crop monitoring 

[43] IoT-based 
monitoring and 
advisory system 

Utilized an IoT-based sensor network to collect environmental 
data and proposed a fuzzy logic algorithm based on the data to 

determine suitable cropping window with minimum pest growth 
for crop production 

[2] GPS Collecting georeferenced data to impose on crop production 
decisions [2] GNSS 

[41] Remote sensing A systematic data collection of crop nutrients and health 
conditions over large geographical areas 

Site-specific farming [31] SSWM Selective herbicides spraying on crops according to management 
zones 

[45] SSWM A weed control system that utilizes camera and color sensors for 
automatic localization and recognition of vegetable plants 

[46] SSNM A system recommendation on the application of a suitable amount 
of fertilizer to crops at the appropriate growth stage 

[47] SSDC Pesticides are applied to crops in small amounts that do not 
surpass the application rate suggested for the detected disease. 

Field robotics [48] Agribot The Agribot platform was used to develop an autonomous 
seeding robot. An infrared (IR) sensor was used in this production 

to track the state of the seed tank and to detect rows. 
[49] Harvesting robot Designed a universal fruit-and-vegetable harvesting robot 

Fleet Management [51] Voice-driven fleet 
management 

system 

A decentralised decision-making platform for agriculture 
machinery and transportation that integrates voice-activated 

capabilities and facilitates information sharing between the fleet’s 
machine-to-machine pairs. 
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variable rate application of materials in PA [52]. It is one of the most notable advantages for 

agriculture to come out of the era of digitisation. 

4.1 Applications and Technologies 
Similar to VRA, VRT in PA can also be further classified into five agriculture applications, 

including traceability, information-driven crop production, site-specific farming, field robotics, and 

fleet management. The following subsections present an overview of these applications. 

Meanwhile, the summary of these application technologies is tabulated in Table 4. 

4.1.1 Traceability 

The normalised difference vegetation index (NDVI) is a graphical tool used for crop 

monitoring through satellite or multispectral cameras that uses light reflectance in the visible and 

near-infrared (NIR) wavelengths to evaluate the amount and health of vegetation in an area [53]. 

The data collection stages, primarily in crop monitoring and mapping functions, are evolving from 

conventional multispectral imaging into hyperspectral imaging. Hyperspectral imaging is a more 

sophisticated technique than multispectral imaging in that it can acquire a precise spectral 

response to target features [41]. 

Hyperspectral imaging can detect subtle variations in ground covers and their evolution over 

time [54]. The more specificity in a scene, the more likely it is that unique crop characteristics and 

physiological characteristics can be identified. It is now possible to recognise and identify crop 

pathogens, pests, and nutrient deficits in vegetation, owing to the potential of comparing spectral 

signatures with variations in plant physiology [55]. Hyperspectral imaging can also identify and 

classify different types of weeds, wild vegetation, and crop varieties. Each species of vegetation and 

variety of crops has its unique spectral signature. However, owing to spectral resolution 

limitations, the retrieved variables’ accuracy is frequently limited, and early signals of crop 

stresses, such as nutrient deficiency and crop disease cannot be detected effectively and promptly. 

Nevertheless, hyperspectral imagery functions are better than multispectral imagery to facilitate a 

more accurate and timely crop physiological status detection [54]. 

Hyperspectral data may be analysed by using ML and DL algorithms because they can 

efficiently process a large number of variables [54]. Researchers have used different ML and DL 

algorithms with hyperspectral images for agricultural applications [54]. ML and DL have a versatile 

and effective computational approach for processing the massive volume of data contained in pre-

processed hyperspectral images. Although ML and DL models are powerful, one must still bear in 

mind that large-quantity and high-quality training datasets limit power outperformance [56]. 

An example of hyperspectral data applications in precision farming utilising ML is presented 

by Zhang et al. [57]. The authors presented a quantitative estimation of wheat stripe rust, one of 

three major wheat rust diseases, by using fractional order differential equations to improve the 

spectral information and reduce noise while the Gaussian process regression (GPR) ML model is 

used to construct models for estimating the severity of wheat stripe rust disease. Conversely, Li et 
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al. [58] presented a study for predicting the anthocyanin content in mulberry plants through 

hyperspectral imaging, least squares-support vector machine, and extreme learning machine 

models. Falcioni et al. [59] adapted AI algorithms in combination with hyperspectral imaging for 

the accurate classification of eleven lettuce plant varieties. 

4.1.2 Information-Driven Crop Production 

Smart crop monitoring through the use of IoT technology is the latest state-of-the-art 

feature in precision farming, with the aim to optimise resource use and crop development through 

real-time, accurate, and location-dependent adjustments [60]. The more IoT sensors used to track 

the data points of crop conditions, the higher the possibility of predicting and foreseeing various 

crop changes and making faster and better decisions. Several technical challenges exist with the 

massive use of IoT applications in farm management, such as reliability, scalability, and data 

transparency issues [61]. These issues happen because diverse and high-dimensional data streams 

from sensors should be ingested in real-time, delivered, and analysed, usually in a short time, to 

meet the demands posed by several agricultural applications [2]. Hence, these IoT sensors exploit 

the 5G technology’s low power transmission and reliability given that PA relies heavily on event 

monitoring that demands data stream processing and consequently requires lower latency and 

higher bandwidth [62]. Therefore, the superfast 5G network will play a critical role in this PA 

application [4]. 

With the advent of smart crop monitoring integration with cloud computing and IoT 

technologies, a challenge arises in dealing with large-scale analysis of agricultural data [13]. Big 

data are expected to play an essential role in the PA domains. High-performance, scalable learning 

systems for data-driven discovery can turn farm management systems into AI systems, providing 

richer real-time recommendations and automation of several agricultural procedures [2]. Raw and 

unstructured data captured via several pre-configured IoT sensors are sent to the cloud for 

processing with the help of big data analytics. The processed result simultaneously and 

automatically reaches the customers. In agriculture, the decision-making trends have been passed 

down through generations of farmers; but now, with the advent of advanced computational 

technologies and complex data processing capabilities, the massive data being captured daily can 

be exploited to establish a Decision Support System (DSS) for smart farming [13]. The collaboration 

of Big Data with Cloud Computing and IoT technologies has transpired a new range of applications 

spanning the area of agriculture [13]. Although big data are widely used in agriculture, they are only 

relevant in some instances, depending on the farm and its degree of technology acceptance [63]. 

Kamilaris et al. [64] cited 34 works where big data were used in agricultural applications. Factors 

such as climate changes, crops condition, and farmer’s decision-making, play an important role in 

adopting big data practices. 
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4.1.3 Site-Specific Farming 

Precision irrigation techniques presented in [31] is a water management site-specific 

technique that aims to improve the efficiency of water use so that the resource is applied effectively 

in the right places at the right time and in the right quantity. Detecting the areas where major 

irrigation is needed can help the farmers save time and water resources. 

In addition, a water management model mentioned in [1] is capable of monitoring and 

scheduling daily crop water requirements within an observed grid. This GIS user-interface 

technique linked with the water management model as shown in Figure 3 is capable of assisting and 

improving the decision-making process in water management based on parameters such as the 

irrigation requirement, rainfall, effective rainfall, and drainage requirement. 

 

 
Figure 3: GIS-based computer model to compute spatial water requirement [1]. 

 
Targeted spraying of herbicides, fertiliser and pesticides is also a major contribution in site-

specific farming to ensure the right amount of chemical is applied at the right time to obtain 

optimal yield and minimise its negative impact on the environment. Stajnko et al. [65] proposed a 

targeted spraying method on an apple orchard that selectively delivers pesticide spray with respect 

to the characteristics of the targets. The density of an apple tree canopy was detected by ultrasound 

sensors controlled by a microcontroller. The analysis focused on the detection of appropriate 

thresholds on 15 cm ultrasound bands, which corresponded to maximal response to tree density, 

and this feature was selected for accurate spraying guidance. The employment of this method 

showed a reduction in the amount of spray delivered by up to 48.15%.  

Apart from using pesticides, biological solutions are being implemented to control the 

excessive usage of chemicals in agriculture practice [66]. Metarhizium Anisopliae is an 

Entomopathogenic Fungi (EPF) that acts as an environmentally friendly biological control agent for 

rhinoceros beetles [67]. 

An example of crop health monitoring by using intelligent site-specific farming technology 

was presented by Devi et al. [68]. In particular, the authors proposed an intelligent bean cultivation 



 

 

http://TuEngr.com Page | 16 
 

approach that utilises computer vision, IoT, and spatio-temporal DL strategies for real-time 

discrimination between healthy and diseased bean leaves, weed detection, and process control, as 

well as site-specific water sprinkling. 

4.1.4 Field Robotics 

Advanced technology allows the deployment of autonomous robotics. UAVs, commonly 

referred to as ‘drones’, are the latest advanced equipment in the field of robotics. Drones are 

typically associated with military, industrial, and other advanced operations; however, with recent 

advances in sensor and information technology over the last two decades, the application of drones 

has expanded to include agricultural applications [30]. Drones are manufactured to become 

smarter, thereby widening their scope of application in the agricultural sector. Drones provide 

comprehensive benefits that help to accurately monitor food crops, especially large agricultural 

crops [3]. Drones can carry out regular air monitoring of crops to identify their status at regular 

intervals. Site-specific disease control can be implemented by integrating UAVs. UAV-based data 

processing technologies use crop imaging information to identify changes in plant biomass and 

their health. Moreover, utilisation of pesticides, water, and fertilisers can be accurately monitored. 

Such a process is possible because  UAV targeting helps in the timely and highly spatially resolved 

spreading of fertilizer [31]. 

4.1.5 Fleet Management 

Fleet management views prescriptive maintenance and real-time environmental 

adjustments, aimed at improving performance and extending the useful life of farm equipment and 

other assets, as well as decreasing the risk of mold, fire, and other threats. Currently, fleet 

management tools focus on real-time insights not only to improve logistics but also to reduce 

costs, and create stronger digital connections amongst all the stakeholders. Current fleet 

management also aims to protect valuable assets, including staff, equipment, inventory and land by 

identifying the conditions that present a hazard to health, safety or productivity at an early stage 

[60]. 

A global telematics platform provider called 3Dtracking proposed an agriculture fleet 

management system based on a case for industry-specific software solutions [69]. The use of a 

telematics platform enables farmers to view their farms in accordance with various points of 

interest (POI). Real-time agricultural transport and machinery, including field robotics detection 

and operational information, are made available with this tool. Additional features of reports and 

alerts for the management of these agricultural transport and machinery are implemented allowing 

for efficient fleet control decision making. Additional functionality for fuel tracking was embedded, 

and the data is being used to measure and provide insights such as distance covered or working 

hours in relation to fuel usage. Fuel dispensing at the farm fuel depot is also added to provide 

further monitoring of fuel usage in relation to work achieved in the fields. This added procedure 
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helped improve the management of fuel and avoid theft or waste in the case of vehicles idling 

unnecessarily. With further studies and developments in the future, features such as driver’s 

authentication, behaviour, working hours, and fuel consumption would improve agriculture 

productivity as a whole. 
 

Table 4: Summary of VRT in PA. 
Application of 

Precision Farming References Technologies Summary 

Traceability 
[41] 

Hyperspectral imaging Identification of unique physiological crop traits to 
identify crop diseases, pests, and nutrient 

deficiencies 

[54] 
ML and DL algorithms Tools for analysing a large number of variables 

from information captured by hyperspectral 
imaging. 

Information-driven 
crop production 

 
 

[61] 

IoT technologies Utilisation of many IoT sensors to track the data 
points for higher possibilities of predicting and 

foreseeing various farms’ changes to make faster 
and better decisions. 

[4] 5G communication 
technology 

To ensure real-time data execution with low latency 
for crop monitoring IoT sensors. 

[63] 
Big data Raw and unstructured data captured via several pre-

configured IoT sensors are sent to the cloud for 
processing with the help of big data analytics. 

Site-specific 
farming [31] 

Precision irrigation 
techniques 

A water management site-specific technique to 
improve the efficiency of water use by monitoring 

and scheduling daily crop water requirements. 

[65] 
Targeted spraying of 
herbicides, fertilizer, 

and pesticides 

A programmable ultrasonic sensing system for 
targeted spraying in orchards that showed a 
reduction in the amount of spray delivered  

[68] DL A tool for crop-monitoring (real-time 
discrimination between healthy and diseased 
leaves, weed detection, and process control) 

Field robotics [30] UAV Crop monitoring, disease control and crop spraying 
at regular time intervals 

Fleet Management 
[69] 

Fleet management 
system utilizing 

telematics platform 

Provides real-time agricultural transport and 
machinery detection and operational information 

with 3D POI. 
 

4.2 PA Issue and Recommendations 
Agriculture production is heavily reliant on water and soil factors, both of which must be 

used more efficiently. These resources are managed effectively with the help of PA practices 

through a set of information technologies (IT) such as GPS, remote sensors, UAV, ML, DL, and 

many other options [70]. PA is equipping farmers with effective instruments for achieving 

productivity in agriculture. Different types of sensors, positioning and navigation systems, and 

variable rate technology are well-known components of PA. Drones and robots are promising tools 

that enable farmers and managers to collect information or perform particular actions, including 

irrigation and fertiliser spraying in remote areas or tough conditions [24]. PA adoption can be 

substantially improved if a combination of more precise and robust sensors specialised for each 

activity and the end-users (farmers) is applied. This process is done to receive quantified 

information about the farm profit augmentation and the positive sustainability impact, combined 

with reduced investment cost [47]. 
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The implementation of PA is not limited to one or two technologies or innovations, as 

certain technologies and innovations may be applicable in one field but not in others. A useful, 

practical, and suitable transition to technology is necessary. Each field should have its own set of 

technologies, such as crop planting methods and customized fertiliser application technology. PA’s 

objective was to achieve site-specific management (SSM) through cost-saving agriculture methods 

to increase yield production [1]. Table 5 summarises the issues and future recommendations that 

can help improve PA practices. 

Multiple possible future research lines exist in the context of PA, focusing on technologies 

that have not been researched as often, such as the utilisation of hyperspectral imaging with UAV 

for crop mapping, which requires further sampling. Although UAVs are currently used in the 

agricultural sector, their integration with hyperspectral imaging has not been extensively used in 

PA due to their limited accessibility outside of the scientific community. The acquisition, 

processing, and evaluation of hyperspectral imaging continue to be difficult tasks due to its large 

data volume, high data dimensionality, and complex information analysis. Performing a 

comprehensive and in-depth study of hyperspectral imaging technologies for agricultural 

applications is therefore advantageous [54]. 
 

Table 5: PA Issues and Future Recommendations. 
Methods Issues Recommendation 

Utilisation of hyperspectral imaging 
with UAVs for crop mapping 

Challenging data acquisition, processing, and evaluation 
of hyperspectral imaging hinders its integration of 

imaging technologies with UAVs 

Perform a comprehensive study on 
hyperspectral imaging, which requires 

further sampling 
Adopting 5G communication for 

easy-access to data storage and real-
time application 

Advances in communication technologies with the 
implementation of 5G networks in all countries 

Mobile operators across the globe should 
largely contribute to smart agriculture by 

building out their digital networks to support 
5G networks 

DSS for crop management A farmer’s lack of PA skills is a major element preventing 
IT adoption in the agriculture sector. 

Farmers usually opt to implement hasty trial-and-error 
tactics, which significantly raise the adoption cost 

Introducing a tool or framework that 
encompasses the required PA knowledge that 

directly supports the decision-making 
process of selecting the appropriate 

technology for a farmer’s needs 
The integration of hardware and 

software 
The generation of a massive amount of crop data to be 
processed creates research opportunities. It could help 

identify new advancements in the context of PA using a 
variety of methods, providing farmers with useful insights 

on how to increase yields 

Specific attention should be given to research 
on the optimised methods of PA application 

to primarily reduce undesired yield and 
improve the carbon footprint of crops 

 

All countries are expected to introduce 5G networks in all fields; hence, Internet prices are 

expected to decrease significantly and connectivity will improve [71]. Investment costs for PA are 

predicted to substantially decrease due to 5G use, which would benefit farmers. Farmers would be 

well equipped for smart farming, as they would be able to predict and prevent crop diseases via 

their cell phones. If the implementation of 5G is largely adopted, mobile operators are 

then required to contribute significantly to smart agriculture by expanding their physical networks 

to support PA applications. For instance, large sensors will be able to gather data in the field and 

store it in the cloud, where it can be analyzed whenever convenient [4]. 

Another essential aspect that future research should focus on is the need for farmers to 

acquire additional PA knowledge. It has become one of the significant factors discouraging them 
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from implementing IT in their fields. Accordingly, a tool or framework that encompasses this 

required knowledge and that directly supports the decision-making process of selecting the 

appropriate IT for a farmer’s needs without relying solely on trial-and-error strategies that further 

increase adoption costs would be highly desirable [70]. The information that the crops offer can 

only be turned into profitable decisions when they are efficiently managed. PA is growing rapidly 

owing to recent developments in data management, as data has become a vital component in 

modern agriculture, assisting farmers with critical decision-making. [63]. Hence, farmers should 

have a DSS for their crop management decision [1]. 

The integration of software and hardware solutions has resulted in the generation of a 

massive amount of data that can be processed by using a variety of methods, providing farmers 

with useful insights on how to increase crop yields [47]. Considering that the adoption of 

innovation solutions promises exponential growth in PA application, further research should be 

carried out to improve the carbon footprint of crops. All these research opportunities could help to 

identify new advancements in the context of PA [70]. Hence, specific attention should be given to 

research on the optimised methods of PA application to primarily reduce undesired yield. 

PA is forecast to hit USD11,107 million by 2025, rising at a 13.97% compound annual growth 

rate from 2019 to 2025 [72]. Although advancements in precision agriculture encourage the 

adoption of innovative solutions, the practice’s implementation is constrained by several 

challenges. The main factors affecting the adoption of PA are as follows [24]: 

 

a) Political and legal support 

b) Decision support systems and user interfaces 

c) Experienced research team works 

d) National educational policy 

e) Success in commercialisation of the PA system  

 

The adoption of advanced technologies in PA continues to be critical for progressing towards 

new and sustainable agriculture capable of illustrating the maximum potential of data-driven 

management in addressing the complexities of food production in the 21st century. Agriculture 5.0 

is a priority over the next decade for the majority of large agricultural machinery manufacturers. 

Hence, governments, researchers, and industry enablers play a critical role in aiding farmers in 

agricultural management systems through digital solutions powered by robotics and artificial 

intelligence [63]. 

5 Conclusion 
To meet the expanding population, agricultural products for food production are predicted 

to increase by 70% by 2050. However, conventional practices show many signs of inefficiency that 

negatively impact the environment and yield production. PA is one of the fastest-growing 

agricultural technologies. PA strives to improve agricultural productivity, land-use efficiency, 
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production costs, environmental quality, and food supply sustainability. Despite expanding 

research on new technology adoption, PA continues to suffer from a lack of agreement on its 

conceptualisation. Thus, this research aimed to synthesise the literature on the adoption of 

agricultural technologies in the farming sector from its conventional era to its current practices.  

This work has shown that with PA practices, using full mechanisation of high-tech equipment can 

reduce agricultural inputs through site-specific applications as it better targets inputs to the spatial 

and temporal needs of agriculture crops. This research provides readers with an overview of the 

evolution of PA throughout the years, categorised based on five major PA applications. Farm 

managers and agricultural analysts may find the information in this work beneficial in identifying 

PA implementations as well as in deciding the PA technologies to be adopted.  
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