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Abstract 
Upon developing an intelligent method for a robot to vary impedance 
stiffness parameters by itself, the relationship between varied stiffness 
parameters, measured force and object texture needs to be obtained. A three-
fingered robot hand was tested for real grasping on a bottle and a ball that 
represent a harder and softer object texture, respectively. Varying the 
parameter at 1000, 500, and 250 for each object, the experiment used a 6-axis 
force-torque sensor to measure the force for analysis. The stiffness at 1000 
showed the most significant difference in force rate compared to the other 
values for both objects. Besides, at this stiffness, the bottle grasping has 
recorded 84% of force rate value measured in the range of 0 to 0.6 and 40% in 
0.21 to 0.4. Comparatively, the force rate data are most frequently measured 
by 48% in the range of 0 to 0.2 for ball grasping with the same stiffness. 
Moreover, from the most frequent range of the force rate, the average value 
for a bottle is found higher than the ball. These show that object texture is a 
feasible parameter to be used for developing the object recognition method 
based on force data in the future. 
 

Disciplinary: Electrical Engineering (Robotics, Systems and Control). 
©2024 INT TRANS J ENG MANAG SCI TECH. 

Cite This Article: 
Selamat M.S., Shauri R.L.A., Roslan A.B. (2024). The Effect of Impedance Stiffness Parameter on Grasping 

Force for Different Object Textures. International Transaction Journal of Engineering, Management, & 
Applied Sciences & Technologies, 15(4), 15A4D, 1-12.  http://TUENGR.COM/V15/15A4D.pdf   DOI: 
10.14456/ITJEMAST.2022.23 

 

1 Introduction 
The robotic hand is one of the end effector types that needs to be programmed for delicate 

control in executing object manipulation tasks. In this modern era, there are various types of robot 

hands built to assist humans whether for industrial use or for human daily life. However, in the 

manufacturing industry for instance, robot tasks that involve grinding or deburring require steady 
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force to be applied by the robot and its ability to reject high-frequency disturbances to produce 

quality results (Anderson and Spong, 1988). The limitations of the robot hand might be caused by 

the nonlinear disturbances from the joints’ elastic gear, shaft windup, or friction in the gears. Thus, 

in order to make a perfect object manipulation, a human-like robotic hand needs not only be 

artificially intelligent but also have the sense of touch and control. In bringing up this feature, the 

impedance control method is one of the ways to control the exerted force that can be measured by 

an appropriate sensor embedded in the robotic hand.  

Impedance control is a dynamic control approach that produces the required motion of 

mechanical hardware related to the force measured from its interaction with the environment. 

Based on the interactive force, the appropriate position of the equipment could be modified to 

avoid excessive force applied by the hardware during the manipulation. According to (Spong, 1989), 

impedance control can be applied to the inner or outer loop control of a system where applying it in 

the former will make it a nonlinear control and for the latter as a linear control for the system.   

A bimanual arm/hand system which consists of four fingers on each arm each has applied an 

impedance controller for grasping an object (Caccavale et al., 2013). Their simulations showed that 

the control counteracted the position and force errors effectively when reaching its steady state 

form of the step response. In a study on mimetic communication of physical human-robot 

interaction (pHRi) using an IRT humanoid robot, impedance control was integrated into the 

controller to perform human-robot interaction tasks, which require physical contact between 

humans and robots. The movement of this robot is controlled by using marker tracking and data 

from human motions and the application of impedance control proved to be capable of providing 

safe and smooth contact with humans (Lee et al., 2009).  

Force-torque sensor integration in industrial robot control has been done by Loske using KR 

16-2 industrial robot with KRC 2 control from KUKA GmbH. The exerted force onto the object was 

measured by the Schunk force-torque sensor (model SI -13 -10) and easily visualized by the 

measurement system in a 3D coordinate system for analysis (Loske & Biesenbach, 2014). A 

different type of force/torque sensors were used to monitor the work by an end-effector of an 

industrial robot in handling work pieces. The sensor has the capability of measuring each force and 

moment in three direction axes, which means providing rich and accurate data on force-torque data 

for robot control (Alpek et al., 2002). 

Wei et al. stated that their proposed impedance control self-tuning strategy has made the 

contact force follow the desired input more efficiently compared to the traditional impedance 

control which has fixed values of the control parameters (Wei et al., 2020). To realize the natural 

feeling of control to be applied to their robot hand, Tsuji et al. have implemented an experiment to 

determine the impedance parameter of the human hand using the least square method (Tsuji et al., 

2010). In another study, an experiment on position and impedance control of a multi-finger 

tendon-driven robotic hand was done (Sainul et al., 2016). The results showed that the proposed 

impedance control law method achieved the desired angle faster compared to a position control law 
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method due to the advantage of controlling the force sensed by the robot system. A new force 

impedance controller was suggested by (Almeida et al., 1999) where the method can operate in two 

modes; as a force-limited impedance controller or a position-limited force controller. The former is 

used when the force reference is not set but a force reference will be used to limit the applied force 

by the manipulator when excessive force is measured. On the other hand, the latter will be used 

when a force reference can be obtained but a position reference will be used to limit the position 

when position error occurs.  

Jo et al. (2013) presented a grasping force control of a robotic hand based on torque velocity 

transformation using a force/torque (F/T) sensor.  The result showed that the measured force 

followed the desired force without high force overshoot. Hanafusa and Hunang have proposed a 

position-based impedance control where the external force and the displacement of the PUMA’s 

hand position were modelled as the mass-spring viscous system (Hanafusa & Hunang, 2018). The 

moment and the force exerted on the hand were fed back to the impedance model blocks to correct 

the displacement and posture reference for the robot. 

Consequently, having interactive forces to be measured when robots do their work, several 

object classification studies have been implemented by previous researchers. An intelligent 

classification method developed using a Bayesian algorithm (Fischel and Loeb, 2012) was used to 

recognize grasped objects using Shadow Hand by exploration of the finger over the object surface 

(Xu et al., 2013). The multimodal tactile BioTac sensor which is capable of measuring the pressure, 

vibration, and temperature was used to identify the compliance of contact, vibration, and thermal 

conductivity when the robot executed six exploratory movements on the objects.  Using the same 

robot hand and a similar method, a solution for object recognition based on an object’s surface 

texture properties was introduced (Kaboli et al., 2015). The Shadow Hand robot hand was attached 

with an artificial skin on the fingertips with the same BioTac sensors attached on each fingertip to 

collect two types of tactile data which are measured by the pressure sensors and impedance sensing 

electrode arrays. To collect the grasping data for object recognition, the robot hand was 

programmed to hold the objects for 2 seconds, which was then repeated 10 times. During the grasp, 

the thumb and index fingers slide over the object surface for 2 seconds and repeat 20 times for each 

object. Support Vector Machine (SVM) was then used to develop the learning model for object 

recognition based on the collected raw data. As a result, the robot hand was able to classify the 

object by texture properties with 97% recognition accuracy. The tactile data were used once again 

to discriminate in-hand objects via texture properties using the online transfer learning method 

where the work improved the recognition accuracy performance to 97% - 100% with lesser training 

samples (Kaboli et al., 2016) and they had improved more to a more robust learning algorithm with 

tactile descriptors that can classify objects without limitations on the number of the tactile sensors, 

sensing technologies, type of exploratory movements, and duration of the objects' surface 

exploration (Kaboli and Cheng, 2018).  
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Konstantinova et al. (2017) developed a flexible hybrid fiber optical force/proximity sensor 

to measure the normal and lateral force signals when a robot’s fingertip makes contact with 

objects. Estimation of the grasping object position is initially made by using a proximity sensor that 

calculates the distance between the finger and the object. The measured force and proximity data 

were used for classification by the Support Vector Machine (SVM) method to differentiate the 

object's stiffness which is between hard and soft textures. Without having the knowledge on a set of 

household objects, the method achieved an 87% of classification accuracy, thus proving the 

feasibility of the sensor for the required measurement. 

Another object recognition study has been done on an Allegro Hand (Funabashi et al., 2018). 

Twenty different objects were selected for testing where ten consists of easily distinguishable 

objects while another ten are objects which are similar to bottle shape. The robot hand was 

embedded with a previously developed uSkin tactile sensor which provides widely distributed force 

vector sensors covering all phalanges of the four fingers of the robot hand. Three types of neural 

network algorithms were tested for object recognition i.e. a simple feedforward, Recurrent Neural 

Network (RNN), Convolutional Neural Network (CNN). The recognition results showed that CNN 

outperformed the other two with 95% recognition accuracy for 20 test objects. 

In this study, the force control study continues from the previous three-fingered robotic 

hand developed by Jaafar and Shauri (2013). A position-based impedance control which takes the 

feedback inputs from a two-axis force measurement was implemented to correct the displacement 

reference of the joints (Nasir et al., 2018). Prior to selecting the impedance control parameters, the 

effect of varying the parameters was investigated and the results showed that the impedance 

stiffness has been the most influential parameter (Nasir, 2017). Consequently, the control method 

was modified to use a new 6-axis force torque (F/T) sensor which has been proven feasible in 

simulation tests (Shauri et al., 2020). However, in order to grasp different textures of objects, the 

robot hand needs to adjust the stiffness of the joints by determining the suitable stiffness 

parameter value by itself using an intelligent method. Prior to the development of the intelligent 

recognition method like in the above-cited research, in this work, an analysis of real grasping data 

for observing the effect of different impedance stiffness parameter values on the measured force 

when grasping different objects is implemented. The experimental results and observations from 

this study are vital and later will be beneficial inputs to the development of the recognition 

algorithm for the hand in the future. 

2 Robot Hand System and Impedance Control Parameter 

2.1 Position-Based Impedance Control 
The position-based impedance control as illustrated in Figure 1 was developed by 

considering the translational impedance equation to enforce an equivalent mass-spring-dashpot 

behaviour for the position displacement of the fingertip. It starts by setting the force reference, Fref 

to a desired value. When the robot’s fingertip is in contact with an object or an environment, 
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external force Fext will be produced. In this work, Fext was taken from finger 1 only as it is the finger 

controlled by the impedance method whereas the movement of the other fingers is short-circuited 

to follow the same trajectory of finger 1. When Fext exceeds Fref, the position-based impedance 

control will be activated and it will modify the desired tip-end position, Pd to Pdnew by using the 

impedance dynamics equations (1) and (2) (Shauri et al., 2020). Md, Dd and Kd are the impedance 

parameters known as mass, damping, and stiffness coefficients where in this work only Kd is varied. 

These coefficients can produce the softness of the robot's hand by changing the tip-end position 

based on the forces exerted on the robot's fingers. In the case where no force interaction occurs at 

the fingertip of the robot hand, Pd will be equal to Pdnew. 

𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐹𝐹𝑟𝑟𝑒𝑒𝑟𝑟 = 𝑀𝑀𝑑𝑑�∆P̈�+ 𝐷𝐷𝑑𝑑�∆Ṗ�+ 𝐾𝐾𝑑𝑑(∆P) (1), 

 ∆P = 𝑃𝑃𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑 − 𝑃𝑃𝑑𝑑  (2). 

 

 
Figure 1: Position-Based Impedance Control (Nasir et al., 2018). 

 

2.2 Robot Hand System 
The robot hand as shown in Figure 2 consists of one palm and three fingers. It is made of 

seven DOF joints where each joint represents 1 DOF. Each joint of the fingers is driven by a DC-

Micro motor equipped with encoders to measure the motor position. A 6-axis F/T sensor (ATI 

NANO17) is placed at the fingertip of the hand for the force measurement in the x, y, and z 

directions. The modified control algorithm based on the new sensor and the interface applying 

multiple PCIs proposed by Shauri et al. (2020) were used in this work. 
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Figure 2: Three-fingered Robot Hand (Shauri et al., 2020). 

 

3 Methodology 
The new application by Shauri et al. (2020) gave a more accurate force measurement 

compared to the previous application by Nasir et al. (2018). However, the robot hand was not yet 

tested for real object grasping which may have different textures. Handling such objects requires 

adjustment of the impedance parameter based on the amount of external forces exerted onto the 

robot’s fingertip. 

3.1 Description of Grasping Data Collection 
In this work, the three-fingered robot hand is tested for real grasping of objects with 

different textures i.e. a harder plastic bottle and a softer spongy ball. Here, while varying Kd to 250, 

500, and 1000, the external force signal measured by the F/T sensor placed on finger 1 was collected 

for analysis.  

The grasping data have been collected in a separate study using the experimental setup as 

shown in Figure 3. A combination of multiple PCI has been used to establish the interface between 

the hardware and software. The position-based impedance control in Figure 1 was implemented on 

Real-time Windows Target in Matlab Simulink.  

In the experiment, Kd, Md and Dd were initially set to 1000, 1, and 10, respectively. The force 

reference Fref was set at a relatively small value of 0.1N. The finger joints were moved to the 

grasping position as shown in Figure 4 where joint 1 J1 was directed to 10° while joint 2 J2 was 

directed to 33°. The external force namely Fext0 was collected at 0.25s after the finger touched the 

object and the force was once again collected as Fext1 as the grasping tightened at 1s. Next, the 
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grasping force rate Frate is calculated using both Fext0 and Fext1 as written in (3). Then, the grasping 

steps were repeated for each object with varied Kd = 500 and Kd = 250. 

 

 

 
Figure 3: Data collection setup of the three-fingered robot hand. 

 

The experiments that have been implemented faced several difficulties with the hardware 

nonlinearities that came from the friction and elasticity of the gears (made of plastic), loose 

connections of the joint components and the backlash of the gears, especially after several 

executions of the grasping experiments. These have somehow affected the time and cost of the data 

collection experiments when the hand failed the grasp. Finally, after confirming the hardware to be 

in good condition, 25 sets of Frate data for each of the bottle and ball cases have successfully been 

collected for analysis. 

 

 
 

Figure 4: Position of the fingertip of the three-fingered robot hand 
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𝐹𝐹𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒 =
𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒1 − 𝐹𝐹𝑒𝑒𝑒𝑒𝑒𝑒0
1− 0.25

 (3). 

3.2 Analysis method 
There are a few methods in data preprocessing which include data cleaning, data integration, 

data transformation, and data reduction. In this work, the data transformation which is the 

normalization technique was used to analyze the effect of varying impedance stiffness parameters 

on the grasping of different object textures. 

Normalization is the process of scaling data attributes of different scales to be within a 

narrower range which is typically from 0 to 1. A nonlinear system used in this work requires the 

normalization of the collected data for fair and comparable analysis relative to the standard scale. 

The normalization of each Frate or x is written in (4). xmin and xmax are the minimum and the maximum 

value of Frate, respectively. 

𝑋𝑋𝑑𝑑𝑛𝑛𝑟𝑟𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒 =
𝑥𝑥 − 𝑥𝑥𝑛𝑛𝑛𝑛𝑑𝑑

𝑥𝑥𝑛𝑛𝑟𝑟𝑒𝑒 − 𝑥𝑥𝑛𝑛𝑛𝑛𝑑𝑑
 (4). 

One of the most common ways of displaying frequency distributions of data is by using a 

histogram graph. A frequency distribution graph can show how frequently each value in the data 

appears across the variable’s range. Here, Frate data were normalized between 0 and 1, and the 

results were displayed on a histogram graph to observe the behaviour of Frate related to the varied 

parameters i.e. Kd and the object texture. 

4 Result and Discussion 
From Figure 5(a) and Figure 5(c), in the case of bottle grasped with Kd set to 250 and 500 

experiments, the frequency of Frate measured is quite evenly distributed across the different ranges. 

In other words, the frequency of Frate with these Kd to be measured significantly in a range of values 

could not be determined as compared to the data for Kd of 1000 as shown in Figure 5(e) which 

recorded 84% of force rate value measured in the range of 0 to 0.6. Within this range, the force rate 

value was mostly in the range of 0.21 to 0.4 or 40% of the total number of experiments.  

On the other hand, from the grasping data for a softer spongy ball in Figure 5(b) and Figure 

5(d), Frate is frequently measured in the range value of 0 to 0.4 when setting Kd at 250 and 500. 

However, it can be observed that Frate is significantly measured by 48% in one class range i.e. within 

0 to 0.2 Frate value for Kd 1000, as shown in Figure 5(f).  

From the above results, it can be concluded from both bottle and ball cases that the stiffness 

parameter at 1000 showed the most significant difference of Frate. In other words, higher Kd means 

higher stiffness of the robot finger and therefore makes the robot finger less flexible to grasp 

objects with harder texture. Besides, at the same stiffness, the Frate data are found to be most 

frequent in the range of 0 to 0.2 for a ball, and 0.21 to 0.4 for a bottle which means that grasping a 
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bottle produces higher force measured in a specific time compared to grasping the softer ball. This 

is also can be proven based on the most frequent range of force rate where the average value of 

force rate for a bottle is higher than the ball. Figure 6 graphed the Frate from all 25 sets of data for 

both objects. 

Next, the calculations of the minimum, maximum and standard deviation of Frate values are 

shown in Figure 7. It can be observed that Frate for Kd = 1000 in the ball case gives the smallest 

standard deviation and is moderately small for a bottle. A smaller standard deviation indicates that 

the data is clustered around the mean value of the respective Frate. Besides, the average Frate for the 

bottle on any Kd values is comparatively higher than for the ball, which means that Frate tends to be 

higher for bottle cases. 

 

 (a)  Bottle Frate data for  Kd = 250 
 

(b) Ball Frate data for  Kd = 250 

 
(c) Bottle Frate data for  Kd = 500  (d) Ball Frate data for  Kd = 500 

 
(e) Bottle Frate data for  Kd = 1000  (f) Ball Frate data for Kd = 1000 

Figure 5: Distribution of Frate after normalization. 
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(a) Frate of grasping a bottle (b) Frate of grasping a ball 

Figure 6: Frate for different object textures. 
 

 
 

Figure 7: Maximum, minimum, mean, and standard deviation of Frate. 
 

5 Conclusion 
In order to grasp different textures of objects, a robot hand needs to be able to adjust the 

stiffness of the joints by determining the suitable stiffness parameter value by itself using an 

intelligent method. Prior to the development of the intelligent recognition method, in this work, 

the effect of varying impedance stiffness parameter Kd on the measured force when grasping 

objects with different textures has been observed. The grasping experiments were executed in a 

separate work using a three-fingered robotic hand that was developed with position-based 

impedance control in previous studies. From the analysis results, Kd = 1000 showed the most 

significant difference in force rate for the two objects compared to the other stiffness values. 

Besides, at the same stiffness, the Frate data are mostly measured in the range of 0 to 0.2 for a ball 

compared to the higher range of 0.21 to 0.4 for a bottle, by 48% and 40% from the total number of 

experiments, respectively.  

Based on the most frequent range of the force rate measured, the average value of the force 

rate for a bottle is higher than the ball. It can also be concluded that force rate is applicable to be 

used as the parameter for determining object texture for grasping tasks by the robot hand. The 

observations from this work are vital and will be a beneficial input to the development of the 

intelligent recognition algorithm for the hand in the future. 
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