:: International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies
http://TuEngr.com
ISSN 2228-9860
eISSN 1906-9642
CODEN: ITJEA8
FEATURE PEER-REVIEWED ARTICLE
Vol.13(10)(2022) |
N Veena, S. Mahalakshmi, B E Abhijith, Adarsh Sadanand Shetty (Department of Information Science and Engineering, BMS Institute of Technology & Management, Bengaluru, INDIA).
Discipline: Brain Science & Neuroengineering (Electroencephalography).
doi: 10.14456/ITJEMAST.2022.196
Keywords: Electroencephalographic signals (EEG); Random Forest; Epilepsy; Seizure prediction; KNN; SVM; Hybrid algorithm; Detection accuracy of epileptic seizures.
Paper ID: 13A10G
Cite this article:
Veena, N., Mahalakshmi, S., Abhijith, B E., Sadanand, A. S. (2022). Framework to Predict Epileptic Seizure Using EEG Signals. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 13(10), 13A10G, 1-10. http://TUENGR.COM/V13/13A10G.pdf DOI: 10.14456/ITJEMAST.2022.196
References
Other issues:
Vol.13(9)(2022)
Vol.13(8)(2022)
Vol.13(7)(2022)
Archives