International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies

Archives

TuEngr+Logo
:: International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies

http://TuEngr.com



ISSN 2228-9860
eISSN 1906-9642
CODEN: ITJEA8


FEATURE PEER-REVIEWED ARTICLE

Vol.13(4)(2022)

  • Rainfall Estimation from Himawari-8 Imagery during the 2017 Wet Monsoon Season in the West Coast of Peninsular Malaysia

    Nur Atiqah Hazali (School of Chemistry and Environmental Studies, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam Selangor, MALAYSIA),
    Arnis Asmat (School of Chemistry and Environmental Studies, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam Selangor, MALAYSIA, Climate Change & Carbon Footprint Research Group, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, MALAYSIA),
    Wan Mohd Naim Wan Mohd (Faculty of Architecture Planning and Survey, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, MALAYSIA).

    Disciplinary: Remote Sensing, Atmospheric Science, Environmental Study, Hydrology.

    ➤ FullText

    doi: 10.14456/ITJEMAST.2022.73

    Keywords: Rainfall estimation; cloud brightness temperature; Himawari-8; IMSRA algorithm; Advanced Himawari-8 Imagery (AHI); Multispectral Rainfall Algorithm (IMSRA); Auto-estimator (AE); Nonlinear Inversion (NI); IMSRA Model.

    Abstract
    Short duration and high rainfall density are the main factors that cause hydrometeorological disasters such as floods and landslides. In disaster mitigation, knowing the rainfall characteristics is important but hampered due to data availability. One of the essential data sources for rainfall estimation is from cloud brightness temperature of Himawari-8 imagery. Using three selective methods were used on twenty-three very heavy rainfall events (>60mm/hour) that happened in the wet season (Northeast and Inter-Monsoon) in 201. These rainfall time frames were used to estimate rainfall using cloud brightness temperature in infrared (IR) of band 14 (11.2 micrometers). The results showed the estimated rainfall for all methods is quite variable. Underestimates of rainfall were found using INSAT Multispectral Rainfall Algorithm (IMSRA), meanwhile, Auto-estimator (AE) and Nonlinear Inversion (NI) have produced overestimates of rainfall. In either case, promising results of rainfall estimates from IMSRA with Mean=31.474, Bias=-0.568, and Root Mean Square (RMSE)=49.343mm which is closer to ground measurement. In essence, the Himawari cloud brightness temperature is an important source in rainfall estimates and the infrared range can be explored in accommodating the rainfall variability.

    Paper ID: 13A4J

    Cite this article:

    Hazali, N. A., Asmat, A., and Wan Mohd, W. M. N. (2022). Rainfall Estimation from Himawari-8 Imagery during the 2017 Wet Monsoon Season in the West Coast of Peninsular Malaysia. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 13(4), 13A4J, 1-13. http://TUENGR.COM/V13/13A4J.pdf DOI: 10.14456/ITJEMAST.2022.73

References

  1. Ahmad, F., Ushiyama, T., & Sayama, T. (2017). Determination of Z-R Relationship and Inundation Analysis for Kuantan River Basin.
  2. Ahmad Mohtar, I. S., & Tahir, W. (2017). The Application of Visible Images from Meteorological Satellite (METSAT) for the Rainfall Estimation in Klang River Basin. Journal of Engineering & Applied Science, 12(10).
  3. Al Mamun, A., Noor Bin Salleh, M., Hanapi& Noor, M. (2018). Estimation of Short-Duration Rainfall Intensity from Daily Rainfall Values in Klang Valley, Malaysia. Applied Water Science, 8, 203. DOI: 10.1007/s13201-018-0854-z
  4. Alfuadi, N., & Wandala, A. (2016). Comparative Test of Several Rainfall Estimation Methods using Himawari-8 Data. International Journal of Remote Sensing and Earth Sciences, 13(2), 95-104.
  5. Asmat, A., Hazali, N. A., Sahak, N., Tahir, W., & Ramli, S. (2021). Spatial Rainfall Rate Estimation from Multi-Source Data in Klang Valley. International Journal of Geoinformatics, 17(2), 1-8.
  6. Ayasha, N. (2020). A Comparison of Rainfall Estimation using Himawari-8 Satellite Data in Different Indonesia Topographies. International Journal of Remote Sensing and Earth Science, 17(2), 189-200.
  7. Baharudin, S. A., & Asmat, A. (2021). Extreme Precipitation Trend Using Regional Climate Model from Multi-Source of Observational Data in Malaysia. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(9), 12A9I, 1-8. DOI: 10.14456/ITJEMAST.2021.177
  8. Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T., Inoue, H., Yoshida, R. (2016). An Introduction to Himawari-8/9 - Japan's New-Generation Geostationary Meteorological Satellites. Journal of the Meteorological Society of Japan. Ser. II, 94, 151-183. DOI: 10.2151/jmsj.2016-009
  9. Chen, F., Liu, Y., Liu, Q., & Li, X. (2014). Spatial Downscaling of TRMM 3B43 Precipitation Considering Spatial Heterogeneity. International Journal of Remote Sensing, 35(9), 3074-3093. DOI: 10.1080/01431161.2014.902550
  10. Diya, S. G., Gasim, M. B., Toriman, M. E., & Abdullahi, M. G. (2014). Floods in Malaysia: Historical Reviews, Causes, Effects and Mitigations Approach. International Journal of Interdisciplinary Research Innovations, 2(4), 59-65.
  11. Department of Irrigation and Drainage (DID). (2020). Rainfall Data - The Official Web Of Public Infobanjir.
  12. Fadzil, M., Rashid, A., Ghani, I. A., Ngah, I., & Yasin, S. M. (2014). Evaluation of Migration Decision-Selectivity Factors in Metropolitan Area: A Case of Klang Valley Region, Malaysia. Journal of Social Sciences and Humanities, 9(1), 34-44.
  13. Flossmann, A. I., Manton, M., Abshaev, A., Bruintjes, R., Murakami, M., Prabhakaran, T., & Yao, Z. (2019). Review of Advances in Precipitation Enhancement Research. Bulletin of the American Meteorological Society, 100(8), 1465-1480. DOI: 10.1175/BAMS-D-18-0160.1
  14. Gairola, R. M., Prakash, S., & Pal, P. K. (2015). Improved Rainfall Estimation over the Indian Monsoon Region by Synergistic use of Kalpana-1 and Rain Gauge Data. Atmosfera, 28(1), 51-61. DOI: 10.1016/S0187-6236(15)72159-4
  15. Haile, A. T., Habib, E., Elsaadani, M., & Rientjes, T. (2012). Inter-comparison of satellite rainfall products for representing rainfall diurnal cycle over the Nile basin. International Journal of Applied Earth Observation and Geoinformation, 21(1), 230-240. DOI: 10.1016/j.jag.2012.08.012
  16. Haile, A. T., Rientjes, T., Gieske, A., & Gebremichael, M. (2010). Multispectral Remote Sensing for Rainfall Detection and Estimation at the Source of The Blue Nile River. International Journal of Applied Earth Observation and Geoinformation, 12, 76-82. DOI: 10.1016/j.jag.2009.09.001
  17. Hidayati, S., & Putra, R. M. (2016). Determination of Relationship between Cloud Top Brightness Temperature of Infrared Channel Himawari-8 Satellite and Rainfall Events on February 2016 at Perak I Surabaya Meteorological Station. The 6th International Symposium for Sustainable Humanosphere Humanosphere Science School 2016, 265-273.
  18. Hua, A. K., & Ping, O. W. (2018). The Influence of Land-Use/Land-Cover Changes on Land Surface Temperature?: A Case Study of Kuala Lumpur Metropolitan City. European Journal of Remote Sensing, 51(1), 1049-1069. DOI: 10.1080/22797254.2018.1542976
  19. Jeniffer, K., Su, Z., Woldai, T., & Maathuis, B. (2010). Estimation of Spatial-Temporal Rainfall Distribution using Remote Sensing Techniques: A Case Study of Makanya Catchment, Tanzania. International Journal of Applied Earth Observation and Geoinformation, 12, 90-99. DOI: 10.1016/j.jag.2009.10.003
  20. Li, L., He, Z., Chen, S., Mai, X., Zhang, A., Hu, B., Tong, X. (2018). Subpixel-Based Precipitation Nowcasting with the Pyramid Lucas-Kanade Optical Flow Technique. Atmosphere, 9(7). DOI: 10.3390/atmos9070260
  21. Long, Y., Zhang, Y., & Ma, Q. (2016). A merging framework for rainfall estimation at high spatiotemporal resolution for distributed hydrological modeling in a data-scarce area. Remote Sensing, 8(7). DOI: 10.3390/rs8070599
  22. Loo, Y. Y., Billa, L., & Singh, A. (2015). Effect of Climate Change on Seasonal Monsoon in Asia and its Impact on the Variability of Monsoon Rainfall in Southeast Asia. Geoscience Frontiers, 6, 817-823. DOI: 10.1016/j.gsf.2014.02.009
  23. Lung, C. H. (2016). Statistical Models for Daily Rainfall Data: A Case Study in Selangor, Malaysia.
  24. Mayowa, O. O., Pour, S. H., Shahid, S., Mohsenipour, M., Harun, S. Bin, Heryansyah, A., & Ismail, T. (2015). Trends in Rainfall and Rainfall-Related Extremes in The East Coast of Peninsular Malaysia. Journal of Earth System Science, 1-15. DOI: 10.1007/s12040-015-0639-9
  25. Meliani, F., Sulistyowati, R., Permata, Z. D. O., & Sumargana, L. (2020). Preliminary Study on Validation of HIMAWARI-8 Data with Ground Based Rainfall Data at South Sumatera , Indonesia. IOP Conference Series: Earth and Environmental Science, 500, 1-9. DOI: 10.1088/1755-1315/500/1/012031
  26. Mishra, A. K., & Rafiq, M. (2019). Rainfall Estimation Techniques over India and Adjoining Oceanic Regions. Current Science, 116(1).
  27. Nashwan, M. S., Ismail, T., & Ahmed, K. (2019). Non-Stationary Analysis of Extreme Rainfall in Peninsular Malaysia. Journal of Sustainability Science and Management, 14(4), 17-34. DOI: 10.11113/jt.v78.9677
  28. Octari, G. R., Suhaedi, D., & Noersomadi. (2015). Model Estimasi Curah Hujan Berdasarkan Suhu Puncak Awan Menggunakan Inversi Nonlinear. Prosiding Penelitian SPeSIA 2015, 23-29.
  29. Park, H. M., Kim, M. A., & Im, J. (2016). Relationship between Himawari-8-Derived Overshooting Tops and Extreme Weather Events in Southeast Asia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 41(July), 325-327. DOI: 10.5194/isprsarchives-XLI-B7-325-2016
  30. Prakash, S., Mahesh, C., Gairola, R. M., & Pal, P. K. (2010). Estimation of Indian Summer Monsoon Rainfall using Kalpana-1 VHRR Data and its Validation using Rain Gauge and GPCP Data. Meteorology and Atmospheric Physics, 110(1), 45-57. DOI: 10.1007/s00703-010-0106-8
  31. Prakash, S., Mahesh, C., Mishra, A., Gairola, R. ., Varma, A. K., & Pal, P. . (2009). Combined use of Microwave and IR Data for the Study of Indian Monsoon Rainfall - 2009. Impact of Climate Change on Agriculture, 227-230.
  32. Prasad, P. G., & Varadarajan, S. (2018). Cloud Growth based Precipitation Estimation Algorithm for Kalpana-1 Satellite Data. International Journal of Advance Engineering and Research Development, 5(3), 877-881.
  33. Putra, R. M., Kurniawan, A., Rangga, I. A., Ryan, M., Endarwin, & Luthfi, A. (2019). An Evaluation Graph of Hourly Rainfall Estimation in Malang. IOP Conference Series: Earth and Environmental Science, 303, 012031. DOI: 10.1088/1755-1315/303/1/012031
  34. Rani, N. A., Afra, S. Y., & Selatan, T. (2016). Rainfall Estimation using Auto-Estimator based on Cloud-Top Temperature of Himawari 8 Satellite compared to Rainfall Observation in Pangkalpinang Meteorological Station. The 6th International Symposium for Sustainable Humanosphere, (November), 15-16.
  35. Risyanto, Lasmono, F., & Nugroho, G. (2019). Identification of Rainfall Area in Indonesia using Infrared Channels of Himawari-8 Advance Himawari Imager (AHI). IOP Conference Series: Earth and Environmental Science, 303, 1-7. DOI: 10.1088/1755-1315/303/1/012057
  36. Sakolnakhon, K. P. N., & Nuntakamolwaree, S. (2016). The estimation rainfall using infrared (IR) band of Himawari-8 satellite over Thailand. Engineering: Naresuan University, 39, 236-248.
  37. Samsuri, N., Abu Bakar, R., & Unjah, T. (2018). Flash Flood Impact in Kuala Lumpur-Approach Review and Way Forward. International Journal of the Malay World and Civilisation, 6(1), 69-76. DOI: 10.17576/jatma-2018-06SI1-10
  38. Suhaila, J., Deni, S. M., Wan Zin, W. A. N., & Jemain, A. A. (2010). Trends in Peninsular Malaysia Rainfall Data during the Southwest Monsoon and Northeast Monsoon Seasons: 1975-2004. Sains Malaysiana, 39(4), 533-542. DOI: 10.1007/s00703-010-0108-6
  39. Suparta, W., Rahman, R., Singh, M., Singh, J., & Latif, M. T. (2015). Investigation of Flash Flood Over the West Peninsular Malaysia by Global Positing System Network. Advanced Science Letters, 21, 153-157. DOI: 10.1166/asl.2015.5845
  40. Suseno, D. P. Y. (2013). The use of Geostationary Satellite-Based Rainfall Estimation and Rainfall-Runoff Modelling for Regional Flash Flood Assessment.
  41. Syafrina, A. H., & Norzaida, A. (2017). Extreme Rainfall in the Eastern Region of Peninsular Malaysia. Communications in Mathematics and Applications, 8(3), 241-251.
  42. Syafrina, A. H., Zalina, M. D., & Juneng, L. (2015). Historical Trend of Hourly Extreme Rainfall in Peninsular Malaysia. Theoretical and Applied Climatology, 120, 259-285. DOI: 10.1007/s00704-014-1145-8
  43. Syafrina, A. H., Zalina, M. D., & Norzaida, A. (2017). Climate Projections of Future Extreme Events in Malaysia. American Journal of Applied Sciences Original Research Paper, 1-6. DOI: 10.3844/ajassp.2017
  44. Tangang, F. T., Juneng, L., Salimun, E., Sei, K. M., Le, L. J., & Muhammad, H. (2012). Climate Change and Variability over Malaysia: Gaps in Science and Research Information. Sains Malaysiana, 41(11), 1355-1366.
  45. Upadhyaya, S., & Ramsankaran, R. (2013). Review of Satellite Remote Sensing Data based Rainfall Estimation Methods. Hydro 2013 International, (December), 1-16.
  46. Varikoden, H., Preethi, B., Samah, A. A., & Babu, C. A. (2011). Seasonal Variation of Rainfall Characteristics in Different Intensity Classes over Peninsular Malaysia. Journal of Hydrology, 404, 99-108. DOI: 10.1016/j.jhydrol.2011.04.021
  47. Vicente, G. A., Scofield, R. A., & Menzel, W. P. (1998). The Operational GOES Infrared Rainfall Estimation Technique. American Meteorological Society, 79(9), 1883-1898.
  48. Waken, R. J., Song, J. J., Kwon, S., Min, K. H., & Lee, G. W. (2018). A Flexible and Efficient Spatial Interpolator for Radar Rainfall Estimation. Journal of Applied Statistics, 45(5), 829-844. DOI: 10.1080/02664763.2017.1317723
  49. Wu, P., Hara, M., Hamada, J. I., Yamanaka, M. D., & Kimura, F. (2009). Why a Large Amount of Rain Falls over the Sea in The Vicinity of Western Sumatra Island during Nighttime. Journal of Applied Meteorology and Climatology, 48(7), 1345-1361. DOI: 10.1175/2009JAMC2052.1
  50. Wulandari, A. V., Pratama, K. R., & Ismail, P. (2018). Using Convective Stratiform Technique (CST) Method to Estimate Rainfall (Case Study in Bali, December 14th 2016). Journal of Physics: Conference Series, 1022, 1-6. DOI: 10.1088/1742-6596/1022/1/012039
  51. Yilmaz, K. K., Hogue, T. S., Hsu, K.-L., Sorooshian, S., Gupta, H. V, & Wagener, T. (2005). Intercomparison of Rain Gauge, Radar, and Satellite-Based Precipitation Estimates with Emphasis on Hydrologic Forecasting. Journal of Hydrometeorology, 6, 497-517.


Other issues:
Vol.13(3)(2022)
Vol.13(2)(2022)
Vol.13(1)(2022)
Archives




Call-for-Papers

Call-for-Scientific Papers
Call-for-Research Papers:
ITJEMAST invites you to submit high quality papers for full peer-review and possible publication in areas pertaining engineering, science, management and technology, especially interdisciplinary/cross-disciplinary/multidisciplinary subjects.

To publish your work in the next available issue, your manuscripts together with copyright transfer document signed by all authors can be submitted via email to Editor @ TuEngr.com (no space between). (please see all detail from Instructions for Authors)


Publication and peer-reviewed process:
After the peer-review process, articles will be on-line published in the available next issue. However, the International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies cannot guarantee the exact publication time as the process may take longer time, subject to peer-review approval and adjustment of the submitted articles.