International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies


:: International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies TuEngr+QR-Code

ISSN 2228-9860
eISSN 1906-9642


Vol.12(9) (2021)

Special Issue on the Universiti Teknologi MARA (UiTM) R&D Showcase


  1. Arora, S., Majumdar, A., & Butola, B. S. (2019). Structure induced effectiveness of shear thickening fluid for modulating impact resistance of UHMWPE fabrics. Composite Structures, 210, 41-48. DOI: 10.1016/j.compstruct.2018.11.028
  2. Bai, R., Li, W., Lei, Z., Ma, Y., Qin, F., Fang, Q., Chen, X., & Chen, Y. (2018). Experimental study of yarn friction slip and fabric shear deformation in yarn pull-out test. Composites Part A: Applied Science and Manufacturing, 107(February), 529-535. DOI: 10.1016/j.compositesa.2018.02.001
  3. Bai, R., Ma, Y., Lei, Z., Feng, Y., & Liu, C. (2019). Energy analysis of fabric impregnated by shear thickening fluid in yarn pullout test. Composites Part B: Engineering, 174(January). DOI: 10.1016/j.compositesb.2019.106901
  4. Bilisik, K. (2017). Two-dimensional (2D) fabrics and three-dimensional (3D) preforms for ballistic and stabbing protection: A review. Textile Research Journal, 87(18), 2275-2304. DOI: 10.1177/0040517516669075
  5. Bilisik, K., & Korkmaz, M. (2011). Single and multiple yarn pull-outs on aramid woven fabric structures. Textile Research Journal, 81(8), 847-864. DOI: 10.1177/0040517510391703
  6. Bilisik, K., & Yolacan, G. (2011). Single and multiple yarn pull-out on E-glass woven fabric structures. Textile Research Journal, 81(19), 2043-2055. DOI: 10.1177/0040517511414976
  7. Cornelissen, B., Rietman, B., & Akkerman, R. (2013). Frictional behaviour of high performance fibrous tows: Friction experiments. Composites Part A: Applied Science and Manufacturing, 44(1), 95-104. DOI: 10.1016/j.compositesa.2012.08.024
  8. Das, S., Jagan, S., Shaw, A., & Pal, A. (2015). Determination of inter-yarn friction and its effect on ballistic response of para-aramid woven fabric under low velocity impact. Composite Structures, 120, 129-140. DOI: 10.1016/j.compstruct.2014.09.063
  9. Duan, Y., Keefe, M., Bogetti, T. A., & Cheeseman, B. A. (2005). Modeling friction effects on the ballistic impact behavior of a single-ply high-strength fabric. International Journal of Impact Engineering, 31(8), 996-1012. DOI: 10.1016/j.ijimpeng.2004.06.008
  10. Duan, Y., Keefe, M., Bogetti, T. A., Cheeseman, B. A., & Powers, B. (2006). A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact. International Journal of Impact Engineering, 32(8), 1299-1312. DOI: 10.1016/j.ijimpeng.2004.11.005
  11. El-Messiry, M., & El-Tarfawy, S. (2014). Effect of Fabric Structure and The Inter Yarn Friction on Fabric Shear Properties. The 2nd Conference for Industrial Textile Researches "Manpower Development, Manufacturing Technologies and Management in Textile Industries" Effect. DOI: 10.13140/2.1.4398.8168
  12. Feng, Y., Ma, Y., Lei, Z., Cao, S., Fang, Q., Li, W., Bai, R., & Xuan, S. (2018). Experimental Study on Yarn Pullout Test of STF Modified Fabric. IOP Conference Series: Materials Science and Engineering, 381(1). DOI: 10.1088/1757-899X/381/1/012111
  13. Hwang, H. S., Malakooti, M. H., Patterson, B. A., & Sodano, H. A. (2015). Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric. Composites Science and Technology, 107, 75-81. DOI: 10.1016/j.compscitech.2014.12.001
  14. Khodadadi, A., Liaghat, G., Vahid, S., Sabet, A. R., & Hadavinia, H. (2019). Ballistic performance of Kevlar fabric impregnated with nanosilica/PEG shear thickening fluid. Composites Part B: Engineering, 162, 643-652. DOI: 10.1016/j.compositesb.2018.12.121
  15. Majumdar, A., & Laha, A. (2016). Effects of fabric construction and shear thickening fluid on yarn pull-out from high-performance fabrics. Textile Research Journal, 86(19), 2056-2066. DOI: 10.1177/0040517515619357
  16. Nasrun, F. M. Z., Yahya, M. F., Ahmad, M. R., & Ghani, S. A. (2018). Uniaxial Tensile Stress-Strain Response on the 3D Angle Interlock Woven Fabric Composite, 7, 430-433.
  17. Nilakantan, G., & Nutt, S. (2018). Effects of ply orientation and material on the ballistic impact behavior of multilayer plain-weave aramid fabric targets. Defence Technology, 14(3), 165-178. DOI: 10.1016/j.dt.2018.01.002
  18. Triki, E., & Dolez, P. (2019). On the contribution of yarn-yarn slippage to woven fabric failure. Journal of the Textile Institute, 1-8. DOI: 10.1080/00405000.2019.1611525
  19. Xu, Y., Chen, X., Wang, Y., & Yuan, Z. (2017). Stabbing resistance of body armour panels impregnated with shear thickening fluid. Composite Structures, 163, 465-473. DOI: 10.1016/j.compstruct.2016.12.056
  20. Yahya, M. F., Ghani, S. A., & Salleh, J. (2014). Effect of impactor shapes and yarn frictional effects on plain woven fabric puncture simulation. Textile Research Journal, 84(10), 1095-1105. DOI: 10.1177/0040517513515319

Other issues:


Call-for-Scientific Papers
Call-for-Research Papers: ITJEMAST invites you to submit high quality papers for full peer-review and possible publication in areas pertaining engineering, science, management and technology, especially interdisciplinary/cross-disciplinary/multidisciplinary subjects.

To publish your work in the next available issue, your manuscripts together with copyright transfer document signed by all authors can be submitted via email to Editor @ (no space between). (please see all detail from Instructions for Authors)

Publication and peer-reviewed process:
After the peer-review process (4-10 weeks), articles will be on-line published in the available next issue. However, the International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies cannot guarantee the exact publication time as the process may take longer time, subject to peer-review approval and adjustment of the submitted articles.