International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies


:: International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies

ISSN 2228-9860
eISSN 1906-9642


Vol.12(3) (2021)

  • A Survey on Bioinspired Cluster-Based Routing and Cognitive Approaches in Wireless Sensor Networks

    Abhijit Halkai, Sujatha Terdal (Department of Computer Science and Engineering, Poojya Dodappa Appa College of Engineering, Kalaburagi, INDIA ).

    Disciplinary: Electronics Engineering and Technology.

    ➤ FullText

    doi: 10.14456/ITJEMAST.2021.45

    Keywords: WSN; sensor node; Cluster-based routing; Bio-inspired routing; Cognitive WSN (CWSN); Bioinspired clustering algorithms.

    Wireless sensor network (WSN) is a type of network comprising of low-cost sensor nodes with communication and computation capabilities implemented high in the monitoring areas. Crucial challenges in WSN are optimal routing, clustering, energy, and lifetime optimization. Many bioinspired clustering and cognitive techniques are induced for optimization and solve the problems. In this paper, a complete survey is carried on bioinspired clustering algorithms like Artificial Bee Colony (ABC), Bat algorithm, Honey Bee algorithm, Genetic algorithm, firefly algorithm which play important role in solving challenges. Considering Quality of Service adding the cognitive technology provides access to a new spectrum with better propagation characteristics. Although these techniques and algorithms have conceived a lot of attention in research, the domain-specific understanding is still needed to be enhanced for its establishment. This report will concisely present the survey and study of approaches like cluster-based routing, bio-inspired clustering, and cognitive techniques in WSN.

    Paper ID: 12A3C

    Cite this article:

    Halkai, A., Terdal, S. (2021). A Survey on Bioinspired Cluster-Based Routing and Cognitive Approaches in Wireless Sensor Networks. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 12(3), 12A3C, 1-12.


  1. Akan, O.B., Karli, O.B., Ergul, O., 2009. Cognitive radio sensor networks. IEEE Netw. 23, 34-40. DOI: 10.1109/MNET.2009.5191144
  2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E., 2002. Wireless sensor networks: A survey. Comput. Networks 38, 393-422. DOI: 10.1016/S1389-1286(01)00302-4
  3. Bhadane, Y., Kadam, P., 2018. A Survey on Hierarchical Cluster Based Secure Routing Protocols and Key Management Schemes in Wireless Sensor Networks. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 3, 18-26. DOI: 10.32628/cseit183810
  4. Boonma, P., Suzuki, J., 2008. Exploring self-star properties in cognitive sensor networking. Int. Symp. Perform. Eval. Comput. Telecommun. Syst. 2008, SPECTS 2008, Part 2008 Summer Simul. Multiconference, SummerSim 2008 36-43.
  5. Canovas, A., Lloret, J., Macias, E., Suarez, A., 2014. Web Spider Defense Technique in Wireless Sensor Networks. Int. J. Distrib. Sens. Networks 2014. DOI: 10.1155/2014/348606
  6. Cavalcanti, D., Das, S., Wang, J., Challapali, K., 2008. Cognitive radio based wireless sensor networks. Proc. - Int. Conf. Comput. Commun. Networks, ICCCN 491-496. DOI: 10.1109/ICCCN.2008.ECP.100
  7. Chan, H., Perrig, A., 2004. ACE: An emergent algorithm for highly uniform cluster formation. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 2920, 154-171. DOI: 10.1007/978-3-540-24606-0_11
  8. Chang, R.S., Kuo, C.J., 2006. An energy efficient routing mechanism for wireless sensor networks. Proc. - Int. Conf. Adv. Inf. Netw. Appl. AINA 2, 308-312. DOI: 10.1109/AINA.2006.86
  9. Cui, Z., Cao, Y., Cai, X., Cai, J., Chen, J., 2019. Optimal LEACH protocol with modified bat algorithm for big data sensing systems in Internet of Things. J. Parallel Distrib. Comput. 132, 217-229. DOI: 10.1016/j.jpdc.2017.12.014
  10. Ejeian, F., Azadi, S., Razmjou, A., Orooji, Y., Kottapalli, A., Ebrahimi Warkiani, M., Asadnia, M., 2019. Design and applications of MEMS flow sensors: A review. Sensors Actuators, A Phys. 295, 483-502. DOI: 10.1016/j.sna.2019.06.020
  11. Fatima, R., Tauseef, S.H., Khanam, R., 2019. Energy Efficient Spectrum Access Design for Cognitive Radio Wireless Sensor Network. Proc. 4th Int. Conf. Commun. Electron. Syst. ICCES 2019 6-11. DOI: 10.1109/ICCES45898.2019.9002519
  12. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H., 2002. An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1, 660-670. DOI: 10.1109/TWC.2002.804190
  13. Herlambang, T., Rahmalia, D., Yulianto, T., 2019. Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) for optimizing PID parameters on Autonomous Underwater Vehicle (AUV) control system. J. Phys. Conf. Ser. 1211. DOI: 10.1088/1742-6596/1211/1/012039
  14. Jabeur, N., 2016. A Firefly-inspired Micro and Macro Clustering Approach for Wireless Sensor Networks. Procedia Comput. Sci. 98, 132-139. DOI: DOI: 10.1016/j.procs.2016.09.021
  15. Kulandaivel, R., Periyanayagi, S., Susikala, S., 2012. Performance Comparison of WSN &WSAN using Genetic Algorithm. Procedia Eng. 30, 107-112. DOI: DOI: 10.1016/j.proeng.2012.01.840
  16. Kumar, A., Zhao, M., Wong, K.J., Guan, Y.L., Chong, P.H.J., 2018. A comprehensive study of IoT and WSN MAC protocols: Research issues, challenges and opportunities. IEEE Access 6, 76228-76262. DOI: 10.1109/ACCESS.2018.2883391
  17. Kumar, D., Ramalakshmi, K., 2018. Survey on Cognitive Wireless Sensor Network. Proc. 2nd Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2018 1885-1889. DOI: 10.1109/ICECA.2018.8474775
  18. Mostafaei, H., Montieri, A., Persico, V., Pescap?, A., 2017. A sleep scheduling approach based on learning automata for WSN partial coverage. J. Netw. Comput. Appl. 80, 67-78. DOI: 10.1016/j.jnca.2016.12.022
  19. Naeimi, S., Ghafghazi, H., Chow, C.O., Ishii, H., 2012. A survey on the taxonomy of cluster-based routing protocols for homogeneous wireless sensor networks. Sensors (Switzerland) 12, 7350-7409. DOI: 10.3390/s120607350
  20. Saleem, A., Afzal, M.K., Ateeq, M., Kim, S.W., Zikria, Y. Bin, 2020. Intelligent learning automata-based objective function in RPL for IoT. Sustain. Cities Soc. 59, 102234. DOI: 10.1016/j.scs.2020.102234
  21. Sendra, S., Parra, L., Lloret, J., Khan, S., 2015. Systems and algorithms for wireless sensor networks based on animal and natural behavior. Int. J. Distrib. Sens. Networks 2015. DOI: 10.1155/2015/625972
  22. Singh, S.P., Sharma, S.C., 2015. A Survey on Cluster Based Routing Protocols in Wireless Sensor Networks. Procedia Comput. Sci. 45, 687-695. DOI: DOI: 10.1016/j.procs.2015.03.133
  23. Villalba, L.J.G., Orozco, A.L.S., Cabrera, A.T., Abbas, C.J.B., 2009. Routing protocols in wireless sensor networks. Sensors 9, 8399-8421. DOI: 10.3390/s91108399
  24. Wei, C., Yang, J., Gao, Y., Zhang, Z., 2011. Cluster-based routing protocols in wireless sensor networks: A survey. Proc. 2011 Int. Conf. Comput. Sci. Netw. Technol. ICCSNT 2011 3, 1659-1663. DOI: 10.1109/ICCSNT.2011.6182285
  25. Wu, J., Hou, G.Z., 2014. A Review of Cluster Based Routing Protocols in Wireless Sensor Networks, in: Materials Science, Computer and Information Technology, Advanced Materials Research. Trans Tech Publications Ltd, pp. 4281-4285. DOI: 10.4028/
  26. Xu, Y., Fan, P., Yuan, L., 2013. A Simple and Efficient Artificial Bee Colony Algorithm. Math. Probl. Eng. 2013, 526315. DOI: 10.1155/2013/526315
  27. Xue, Y., Chang, X., Zhong, S., Zhuang, Y., 2014. An efficient energy hole alleviating algorithm for wireless sensor networks. IEEE Trans. Consum. Electron. 60, 347-355. DOI: 10.1109/TCE.2014.6937317
  28. Younis, O., Fahmy, S., 2004. Distributed clustering in ad-hoc sensor networks: A hybrid, energy-efficient approach. Proc. - IEEE INFOCOM 1, 629-640. DOI: 10.1109/infcom.2004.1354534
  29. Youssef, W., Younis, M., 2008. A cognitive scheme for gateway protection in wireless sensor network. Appl. Intell. 29, 216-227. DOI: 10.1007/s10489-007-0088-5
  30. Zhu, R., Liu, L., Ma, M., Li, H., 2020. Cognitive-inspired Computing: Advances and Novel Applications. Futur. Gener. Comput. Syst. 109, 706-709. DOI: 10.1016/j.future.2020.03.017

Other issues:


Call-for-Scientific Papers
Call-for-Research Papers:
ITJEMAST invites you to submit high quality papers for full peer-review and possible publication in areas pertaining engineering, science, management and technology, especially interdisciplinary/cross-disciplinary/multidisciplinary subjects.

To publish your work in the next available issue, your manuscripts together with copyright transfer document signed by all authors can be submitted via email to Editor @ (no space between). (please see all detail from Instructions for Authors)

Publication and peer-reviewed process:
After the peer-review process (4-10 weeks), articles will be on-line published in the available next issue. However, the International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies cannot guarantee the exact publication time as the process may take longer time, subject to peer-review approval and adjustment of the submitted articles.