:: International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies
http://TuEngr.com
ISSN 2228-9860
eISSN 1906-9642
CODEN: ITJEA8
FEATURE PEER-REVIEWED ARTICLE
Vol.11(12) (2020) |
Fatin Nabila Abd Latiff, Wan Ainun Mior Othman, N. Kumaresan
(Institute of Mathematical Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, MALAYSIA).
Disciplinary: Mathematics, Computer Science (Network/Cyber Security).
DOI: 10.14456/ITJEMAST.2020.229
Keywords: Chaotic synchronization; Chaotic Neural Network (CNN); Sliding surface; RSA encryption; Double encryption; Cyber security, Cryptography technology.
Paper ID: 11A12D
Cite this article:
Latiff, F.N.A., Othman, W.A.M., Kumaresan, N. (2020). SYNCHRONIZATION OF DELAYED INTEGER ORDER AND DELAYED FRACTIONAL ORDER RECURRENT NEURAL NETWORKS SYSTEM WITH ACTIVE SLIDING MODE. International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies, 11(12), 11A12D, 1-15. http://DOI.org/10.14456/ITJEMAST.2020.229
References:
[1] Podlubny I. Fractional Differential Equations: Methods of Their Solution and Some of Their Applications. Academic Press; 1998. 340p.
[2] Hilfer R. Applications of Fractional Calculus in Physics: Applications of Fractional Calculus in Physics; 2000.
[3] Muthukumar P, Balasubramaniam P. Feedback synchronization of the fractional order reverse butterfly-shaped chaotic system and its application to digital cryptography. Nonlinear Dynamics. 2013;74(4):1169-81.
[4] Pecora LM, Carroll TL. Synchronization in chaotic systems. Physical Review Letters. 1990;64(8):821-4.
[5] Banerjee S. Chaos synchronization and cryptography for secure communications: applications for encryption: Information Science Reference; 2011. 570- p.
[6] Nana B, Woafo P, Domngang S. Chaotic synchronization with experimental application to secure communications. Communications in Nonlinear Science and Numerical Simulation. 2009;14(5):2266-76.
[7] Luo ACJ. A theory for synchronization of dynamical systems. Communications in Nonlinear Science and Numerical Simulation. 2009;14(5):1901-51.
[8] Sagar RK, Arif M. Synchronization control of two identical three restricted body problems via active control. New Trends in Mathematical Science. 2018;3(6):137-46.
[9] Vaidyanathan S, Azar AT. Adaptive control and synchronization of Halvorsen circulant chaotic systems. 337: Springer, Cham; 2016. p. 225-47.
[10] Stamova I, Stamov G. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers. Neural Networks. 2017;96:22-32.
[11] Chen D, Zhang R, Sprott JC, Chen H, Ma X. Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control. Chaos: An Interdisciplinary Journal of Nonlinear Science. 2012;22(2):023130.
[12] Liu H, Hou B, Xiang W. Uncertain Nonlinear Chaotic Gyros Synchronization by Using Adaptive Fuzzy Control. International Journal of Online Engineering. 2013;9(3).
[13] Jia S, Hu C, Yu J, Jiang H. Asymptotical and adaptive synchronization of Cohen–Grossberg neural networks with heterogeneous proportional delays. Neurocomputing. 2018;275:1449-55.
[14] Li Y, Li C. Complete synchronization of delayed chaotic neural networks by intermittent control with two switches in a control period. Neurocomputing. 2016;173:1341-7.
[15] Sun W, Wang S, Wang G, Wu Y. Lag synchronization via pinning control between two coupled networks. Nonlinear Dynamics. 2015;79(4): 2659-66.
[16] Yang X, Ho DWC. Synchronization of delayed memristive neural networks: Robust analysis approach. IEEE Transactions on Cybernetics. 2016;46(10):3377-87.
[17] Bai EW, Lonngren KE. Sequential synchronization of two Lorenz systems using active control. Chaos, solitons and fractals. 2000;11(7):1041-4.
[18] Agrawal SK, Srivastava M, Das S. Synchronization of fractional order chaotic systems using active control method. Chaos, Solitons and Fractals. 2012;45(6):737-52.
[19] Bhalekar S, Daftardar-Gejji V. Synchronization of different fractional-order chaotic systems using active control. Communications in Nonlinear Science and Numerical Simulation. 2010;15(11):3536-46.
[20] Agiza HN, Yassen MT. Synchronization of Rossler and Chen chaotic dynamical systems using active control. Physics Letters, Section A: General, Atomic and Solid State Physics. 2001;278(4):191-7.
[21] Ho MC, Hung YC. Synchronization of two different systems by using generalized active control. Physics Letters, Section A: General, Atomic and Solid State Physics. 2002;301(5-6):424-8.
[22] Lin JS, Yan JJ, Liao TL. Chaotic synchronization via adaptive sliding mode observers subject to input nonlinearity. Chaos, Solitons and Fractals. 2005;24(1):371-81.
[23] Yau HT. Design of adaptive sliding mode controller for chaos synchronization with uncertainties. Chaos, Solitons and Fractals. 2004;22(2):341-7.
[24] Zhang H, Ma XK, Liu WZ. Synchronization of chaotic systems with parametric uncertainty using active sliding mode control. Chaos, Solitons and Fractals. 2004; 21(5):1249-57.
[25] Hu T, He Z, Zhang X, Zhong S. Global synchronization of time-invariant uncertainty fractional-order neural networks with time delay: Neurocomputing; 2019. 45-58 p.
[26] Yang LX, He WS, Liu XJ. Synchronization between a fractional-order system and an integer order system. Computers and Mathematics with Applications. 2011; 62(12):4708-16.
[27] Stamova I. Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dynamics. 2014; 77(4):1251-60.
[28] Li C, Deng W. Remarks on fractional derivatives. Applied Mathematics and Computation. 2007;187(2):777-84.
Other issues:
Vol.11(12)(2020)
Vol.11(11)(2020)
Vol.11(10)(2020)
Vol.11(9)(2020)
Vol.11(8)(2020)
Vol.11(7)(2020)
Vol.11(6)(2020)
Vol.11(5)(2020)
Vol.11(4)(2020)
Vol.11(3)(2020)
Vol.11(2)(2020)
Vol.11(1)(2020)
Archives